Science in China Series C: Life Sciences

, Volume 44, Issue 3, pp 294–304 | Cite as

Comparative study of symmetric and asymmetric somatic hybridization between common wheat andHaynaldia villosa



Symmetric and asymmetric protoplast fusion between long term cell suspension-derived protoplasts ofTriticum aestivum (cv. Jinan 177) and protoplasts ofHaynaldia villosa prepared from one-year-old embryogeneric calli was performed by PEG method. In asymmetric fusion, donor calli were treated with gamma ray at a dose of 40, 60, 80 Gy (1.3 Gy/min) respectively and then used to isolate protoplasts. Results of morphological, cytological, biochemical (isozyme) and 5S rDNA spacer sequence analysis revealed that we obtained somatic hybrid lines at high frequency from both symmetric and asymmetric fusion. Hybrid plants were recovered from symmetric and low dose γ-fusion combinations. GISH (genomicin situ hybridization) analysis proved exactly the existence of both parental chromosomes and the common occurrence of several kinds of translocation between them in the hybrid clones regenerated from symmetric and asymmetric fusion. And the elimination of donor DNA in hybrid clones regenerated from asymmetric fusion combinations was found to increase with the increasing gamma doses. It is concluded that transference and recombination of nuclear DNA can be achieved effectively by symmetric and asymmetric fusion, hybrids with small fragment translocation which are valuable in plant breeding can be obtained directly by asymmetric fusion.


common wheat Haynaldia villosa somatic hybridization genomicin situ hybridization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, Z. Y., Xia, G. M., Chen, H. M., Somatic embryogenesis and plant regeneration from protoplasts isolated from embryogenic cell suspensions of wheat (Triticum aestivum L.), Plant Cell, Tissue and Organ Culture, 1992, 98: 79–85.Google Scholar
  2. 2.
    Zhou, A. F., Xia, G. M., Chen, H. M., Asymmetric somatic hybridization betweenTriticum aestivum andHaynaldia villosa, Science in China, Ser. C., 1996, 39(6): 617–626.Google Scholar
  3. 3.
    Zhou, A. F., Xia, G. M., Chen, H. M. et al., Effect of 60Co-γ radiation on calli ofHaynaldia villosa, Chinese J. of Biotechnology, 1996, 12(Supplement): 127–130.Google Scholar
  4. 4.
    Xia, G. M., Chen, H. M., Wang, H., Somatic hybridization and regeneration capacity complementation between common wheat (T. aestivum) andAgropyron elongatum. J. Shandong University, 1995, 30(3): 325–330.Google Scholar
  5. 5.
    Xia, G. M., Chen, H. M., Plant regeneration from intergeneric somatic hybridization betweenTriticum aestivum L. andLeymus chinensis (Trin.)Tzvel., Plant Science, 1996, 120: 197–203.CrossRefGoogle Scholar
  6. 6.
    Doyle, J. J., Doyle, J. L., Isolation of plant DNA from fresh tissue, Focus, 1990, 12: 13–15.Google Scholar
  7. 7.
    Zhou, A. F., Xu, C. H., Xiang, F. N. et al., Study on the identification of somatic hybrids by PCR with 5S rDNA spacer sequence primers, Chinese J. of Biotechnology, 1999, 15(4): 529–532.Google Scholar
  8. 8.
    Ma, J. X., Zhou, R. H., Jia, J. Z. et al., Identification of wheat-Haynaldiavillosa substitution lines conferring resistance to powdery mildew using genomicin situ hybridization (GISH) and RFLP markers, Acta Genetica Sinica, 1997, 24(5): 447–452.Google Scholar
  9. 9.
    Zhou, R. H., Jia, J. Z., Dong, Y. C. et al., Characterization of progenies ofTriticum aestivum-Psathyrostachys juncea derivatives by using genomicin-situ hybridization, Science in China, Ser. C., 1997, 40(6): 657–664.CrossRefGoogle Scholar
  10. 10.
    Parokonny, A. S., Kenton, A. Y., Gleba, Y. Y. et al., Genomic reorganization in Nicotiana asymmetric somatic hybrids analysed byin situ hybridization. Plant Journal, 1992, 2: 863–874.PubMedGoogle Scholar
  11. 11.
    Piastuch, W. C., Bates, G. W., Chromosomal analysis of Nicotiana asymmetric somatic hybrids by dot blotting andin situ hybridization, Mol. Gen. Genet., 1990, 222: 97–103.PubMedGoogle Scholar
  12. 12.
    Buiteveld, J., Suo, Y., van Lookeren Campagne, M. M. et al., Production and characterization of somatic hybrid plants between leek (Allium ampeloprasum L.) and onion (Allium cepa L.), Theor. Appl. Genet., 1998, 96: 765–775.CrossRefGoogle Scholar
  13. 13.
    Wolters, A. M. A., Schoenmakers, H. C. H., Kamstra, S. et al., Mitotic and meiotic irregularities in somatic hybrids ofLycopersicon esculentum andSolanum tuberosum, Genome, 1994, 37: 726–735.PubMedGoogle Scholar
  14. 14.
    Shieder, O., Somatic hybrids orDatura irnoxia Mill +Datura discolor Benin and ofDatiura irnoxia Mill +Datura stramonium L. vartatula L. (I)—Selection and characterization, Mol. Gen. Genet., 1978, 162: 113–119.CrossRefGoogle Scholar
  15. 15.
    Handley, L. W., Nickels, R. L., Cameron, M. W. et al., Somatic hybrid plants betweenLycopersicon esculentum andSolanum lycopersicoides, Theor. Appl. Genet., 1986, 71: 691–697.CrossRefGoogle Scholar
  16. 16.
    Preiszner, J., Feher, A., Veisz, O. et al., Characterization of morphological variation and cold resistance in interspecific somatic hybrids between potato (Solanum tuberosum L.) andS. brevidens Phil., Euphytica, 1991, 57: 37–49.Google Scholar
  17. 17.
    Polgar, Z. S., Preiszner, J., Dudits, D. et al., Vigorous growth of fusion products allows highly efficient selection of interspecific potato somatic hybrids: molecular proofs, Plant Cell Reports, 1993, 12: 399–402.CrossRefGoogle Scholar
  18. 18.
    Xia, G. M., Wang, H., Chen, H. M., Plant regeneration from intergeneric asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Russian wildrye (Psathyrostichs juncea (Fisch) Neveski) and couch grass (Agropyron elongatum Host Neviski), Chin. Sci. Bull., 1996, 41(15): 1423–1426.Google Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  1. 1.School of Life ScienceShandong UniversityJinanChina
  2. 2.Institute of GeneticsChinese Academy of ScienceBeijingChina

Personalised recommendations