Science in China Series C: Life Sciences

, Volume 43, Issue 4, pp 402–408 | Cite as

Golgi 58K-like protein in pollens and pollen tubes ofLilium davidii

  • Yan Li
  • Longfei Yan


In animal cells, Golgi apparatus is located near the microtubule organizing center (MTOC) and its position is determined partly by 58K protein. By sodium dodecyl-sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) and immuno-blotting methods, a 58K-like protein has been found in pollen grains and pollen tubes ofLilium davidii. Its molecular weight is very similar to that of the 58K protein of animal cells. By immunofluorescence labeling, under a confocal laser scanning microscope (CLSM), the animal 58K antibody revealed a punctate staining in pollen grains and pollen tubes, which is consistent with the distribution of Golgi apparatus in plant cells. In addition, immuno-gold labeling and transmission electron microscopy showed that the 58K-like protein bound mainly to the membrane of vesicles-like structure near Golgi apparatus. This is the first demonstration of the 58K-like protein in plant cells.


Golgi apparatus Golgi 58K protein plant pollen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Warren, G., Malhotra, V., The organization of the Golgi apparatus, Curr. Opin. Cell Biol., 1998, 10: 493.PubMedCrossRefGoogle Scholar
  2. 2.
    Bloom, G. S., Brashear, T. A., A novel 58-kDa protein associates with the Golgi apparatus and microtubules, J. Biol. Chem., 1989, 264: 16083.PubMedGoogle Scholar
  3. 3.
    Henning, D., Scales, S. J., Moreau, A. et al., A formiminotransferase cyclodeaminase isoform is localized to the Golgi complex and can mediate interaction of trans-Golgi network-derived vesicles with microtubules, J. Biol. Chem., 1998, 273: 19602.CrossRefGoogle Scholar
  4. 4.
    Bashour, A.-M., Bloom, G. S., 58K, a microtubule-binding Golgi protein, is a formiminotransferase cyclodeaminase, J. Biol. Chem., 1998, 273: 19612.PubMedCrossRefGoogle Scholar
  5. 5.
    Gao, Y.-S, Alvarez, C., Nelson, D. S. et al., Molecular cloning, characterization, and dynamics of rat formiminotransferase cyclodeaminase, a Golgi-associated 58-kDa protein, J. Biol. Chem., 1998, 273: 33825.PubMedCrossRefGoogle Scholar
  6. 6.
    Donaldson, J. G., Lippincott-Schwartz, J., Bloom, G. S. et al., Dissociation of a 110-kD peripheral membrane protein from the Golgi apparatus is an early event in brefeldin A action, J. Cell Biol., 1990, 111: 2295.PubMedCrossRefGoogle Scholar
  7. 7.
    Ktistakis, N. T., Roth, M. G., Bloom, G. S., PtK1 cells contain a nondiffusible, dominant factor that makes the Golgi apparatus resistant to brefeldin A, J. Cell Biol., 1991, 113: 1009.PubMedCrossRefGoogle Scholar
  8. 8.
    Mollenhauer, H. H., Morre, D. J., Structure of Golgi apparatus, Protoplasma, 1994, 180: 14.CrossRefGoogle Scholar
  9. 9.
    Farquhar, M. G., Palade, G. E., The Golgi apparatus: 100 years of progress and controversy, Trends Cell Biol., 1998, 8: 2.PubMedCrossRefGoogle Scholar
  10. 10.
    Hawes, C., Satiat-Jeunemaitre, B., Stacks of questions: how does the plant Golgi work? Trends Plant Sci., 1996, 1: 395.Google Scholar
  11. 11.
    Boevink, P., Oparka, K., Cruz, S. S. et al., Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network, Plant J., 1998, 15:441.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu, X., Yen, L. F., Purification and characterization of actin from maize pollen, Plant Physiol., 1992, 99: 1151.PubMedGoogle Scholar
  13. 13.
    Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, 227: 680.PubMedCrossRefGoogle Scholar
  14. 14.
    Towbin, J., Sachelin, T., Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels to introcellulose sheets: procedure and some application, Proc. Natl. Acad. Sci. USA, 1979, 76: 4350.PubMedCrossRefGoogle Scholar
  15. 15.
    Baskin, T. I., Busby, C. H., Fowke, L. C. et al., Improvements in immunostaining samples embedded in methacrylate: Localization of microtubules and other antigens throughout developing organs in plants of diverse taxa, Planta, 1992, 187: 405.CrossRefGoogle Scholar
  16. 16.
    Li, Y., Yen, L. F., Zee, S. Y. et al., Membrane skeleton spectrin in pollen and pollen tube, Chinese Science Bulletin, 1999, 44(10): 930.CrossRefGoogle Scholar
  17. 17.
    Horsley, D., Coleman, J., Evans, D. et al., A monoclonal antibody, JIM 84, recognizes the Golgi apparatus and plasma membrane in plant cells, J. Exp. Bot., 1993, 44 (suppl): 223.Google Scholar
  18. 18.
    Satiat-Jeunemaitre, B., Hawes, C., Redistribution of a Golgi glycoprotein in plant cells treated with brefeldin A, J. Cell. Sci., 1992, 103: 1153.Google Scholar
  19. 19.
    Satiat-Jeunemaitre, B., Steele, C., Hawes, C., Golgi-membrane dynamics are cytoskeleton dependent: a study on Golgi stack movement induced by brefeldin A, Protoplasma, 1996, 191: 21.CrossRefGoogle Scholar
  20. 20.
    Holleran, E. A., Tokito, M. K., Karki, S. et al., Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles, J. Cell. Biol., 1996, 135: 1815.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  1. 1.College of Biological SciencesChina Agricultural UniversityChina
  2. 2.Key Laboratory of Plant Physiology and BiochemistryMinistry of AgricultureBeijingChina

Personalised recommendations