Effect of phosphatidylglycerol on conformation and micro-environment of tyrosyl residue in photosystem II

  • Zhenle Yang
  • Liangbi Li
  • Yinong Xu
  • Tingyun Kuang


The structural aspects in the interaction of phosphatidylglycerol (PG) with photosystem II (PSII), mainly the effect of PG on conformation and microenvironment of tyrosine residues of PSII proteins were studied by Fourier transform infrared (FTIR) spectroscopy. It was found that the binding of PG to PSII particle induces changes in the conformation and micropolarity of phenol ring in the tyrosine residues. In other words, the PG effect on the PSII results in blue shift of the stretch vibrational band in the phenol ring from 1620 to 1500 cm−1 with the enhancement of the absorbance intensity. Additionally, a new spectrum of hydrogen bond was also observed. The results imply that the hydrogen-bond formation between the OH group of phenol and one of PG might cause changes in the structures of tyrosine residues in PSII proteins.


photosystem II phosphatidylglycerol tyrosine residue Fourier transform infrared spectroscopy 


  1. 1.
    Webb, M. S., Green, B. R., Biochemical and biophysical properties of thylakoid acyl lipids, Biochim. Biophys. Acta, 1991, 1060: 133.CrossRefGoogle Scholar
  2. 2.
    Joyard, J., Maréchal, E., Miège, C. et al., Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplast, in Lipids in Photosynthesis: Structure, Function and Genetics (eds. Siegenthaler, P. A., Murata, M.), The Netherlands: Kluwer Academic Publishers, 1998, 21–52.Google Scholar
  3. 3.
    Nußberger, S., Dörr, K., Wang, D. N. et al., Lipid-protein interaction in crystals of plant light-harvesting complex, J. Mol. Biol., 1993, 224: 347.CrossRefGoogle Scholar
  4. 4.
    Siegenthaler, P. A., Rawyler, A., Smutny, J., The phospholipid population which sustains the uncoupled non-cyclic electron flow activity is localised in the inner monolay of the thylakoid membrane, Biochim. Biophys. Acta, 1989, 975: 104.CrossRefGoogle Scholar
  5. 5.
    Murata, M., Higashi, S., Fujimura, Y., Glycerolipids in various preparations of photosystem II from spinach chloroplasts, Biochim. Biophys. Acta, 1990, 1019: 261.CrossRefGoogle Scholar
  6. 6.
    Kruse, O., Schmid, G. H., The role of phosphatidylglycerol as a functional effector and membrane anchor of the D1-core peptide from photosystem II particles of the cyanobacteriumOscillatoria chalybea, Z Naturforsch, 1995, 50c: 380.Google Scholar
  7. 7.
    Yang Zhenle et al., Effect of phosphatidylglycerol on oxygen evolution in photosystem II, Acta Botany Sinica, 2000, 42(3): 249.Google Scholar
  8. 8.
    Berthold, D. A., Babcick, G. T., Yocum, C. F., A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes, EPR and electron-transport properties, FEBS Lett., 1981, 134: 231.CrossRefGoogle Scholar
  9. 9.
    Arnon, D. I., Copper enzymes in isolated chloroplasts: polyphenyloxidase inBeta vulgaris, Plant Physiol., 1949, 14: 1.Google Scholar
  10. 10.
    Katz, J. J., Diugherty, R. C., Boucher, L. J., Infrared and nuclear magnetic resonance of chlorophyll, in The Chlorophylls (eds. Vemon, L. P., Seely, G. R.), New York: Academic Press, 1966, 185–251.Google Scholar
  11. 11.
    Jackson, M., Mantsch, H.H., Biomembrane structure from FTIR spectroscopy, Spectrochimica Acta Rev., 1993, 15: 53.Google Scholar
  12. 12.
    He, W. Z., Newell, W. R., Haris, P. I. et al., Protein secondary structure of the isolated photosystem II reaction center and conformational changes studied by Fourier transformation infrared spectroscopy, Biochemistry, 1992, 31: 9848.CrossRefGoogle Scholar
  13. 13.
    Byler, D. M., Susi, H., Examination of the secondary structure of protein by deconvolved FTIR spectra, Biopolymers, 1986, 25: 469.PubMedCrossRefGoogle Scholar
  14. 14.
    MacDonald, G. M., Barry, B. A., Difference FTIR study of a novel biochemical preparation of photosystem II, Biochemistry, 1992, 31: 9848.PubMedCrossRefGoogle Scholar
  15. 15.
    Yao Xinsheng, Chen Yingjie, Xu Suixu et al., Spectral Analysis of Organic Compounds (in Chinese), Beijing: People’s Sanitation Press, 1981.Google Scholar
  16. 16.
    Amesz, J., Hoff, A. J., eds., Biophysical Techniques in Photosynthesis, Dordrecht: Kluwer Academic Publishers, 1996.Google Scholar
  17. 17.
    Susi, H., Byler, D. M., Resolution-enhanced Fourier transform infrared spectroscopy of enzymes, Methods in Enzymology, 1986, 130: 290.PubMedCrossRefGoogle Scholar
  18. 18.
    Chirgadze, Y. N., Fedorov, O. V., Trushina, N. P., Estimation of amino acid residue side chain absorption in the infrared spectra of protein solutions in heavy water, Biopolymers, 1975, 14: 679.PubMedCrossRefGoogle Scholar
  19. 19.
    Wilson, E. B., Decius, J. C., Cross, P. C., The Theory of Infrared and Ramam Vibrational Spectra, New York: McGraw-Hill, 1955.Google Scholar
  20. 20.
    Venyaminov, S. Y., Kalnin, N. N., Quantitative IR spectrophotometry of peptide compounds in water (H2O) solution (I) Spectral parameters of amino acid residue absorptions, Biopolymers, 1990, 30: 1243.PubMedCrossRefGoogle Scholar
  21. 21.
    Colthup, N. B., Daly, L. H., Wiberley, S. E., Introduction to Infrared and Raman Spectroscopy, 3rd ed., Boston: Academic Press, 1990.Google Scholar
  22. 22.
    Paiter, P. C., Coleman, M. M., Koenig, J. L., The Theory of Vibrational Spectroscopy and Its Applications to Polymeric Materials, New York: Wiley-Interscience, 1962.Google Scholar
  23. 23.
    Fragata, M., Nenonene, E. K., Maire, V. et al., Structure of the phosphatidylglycerol-photosystem II complex studied by FT-IR spectroscopy, Mg(II) effect on the polar head group of phosphatidylglycerol, J. Mol. Struct., 1997, 405: 151.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Zhenle Yang
    • 1
  • Liangbi Li
    • 1
  • Yinong Xu
    • 1
  • Tingyun Kuang
    • 1
  1. 1.Photosynthesis Research Center, Institute of BotanyChinese Academy of SciencesBeijingChina

Personalised recommendations