Advertisement

Science in China Series C: Life Sciences

, Volume 43, Issue 3, pp 245–253 | Cite as

Isolation of a (+)- δ-cadinene synthase gene CAD1-A and analysis of its expression pattern in seedlings ofGossypium arboreum L.

  • Wanqi Liang
  • Xiaoping Tan
  • Xiaoya Chen
  • Takashi Hashimoto
  • Yasuyuki Yamada
  • Peter Heinstein
Article

Abstract

The cotton sesquiterpene cyclase, (+)-δ-cadinene synthase, is encoded by a gene family, which can be divided into two subfamilies:CAD1-A and CAD1-C. The geneCAD1-A was isolated fromG. arboreum. In situ hybridization performed on seven-day-old cotton seedlings localized transcripts of both the CAD1 -A and CAD1 -C mainly in lateral root primordium and apical ground meristem, vascular tissues of emerging lateral roots, and also in procambium and some subepidermal cells of the hypocotyl. The CAD1 -A promoter showed a similar tissue-specificity in transgenic tobacco plants. Histochemistry showed occurrence of sesquiterpene aldehydes in outer cells of the lateral root tips, as well as in pigment glands. The CAD1 gene expression in G.arboreum seedlings and the spatial pattern of sesquiterpene biosynthesis constitute a chemical defense machinery in cotton seedlings.

Keywords

cotton sesquiterpene cyclase gossypol cadinene in situ hybridization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, A.A., Stipanovic, R. D., The chemical composition, biological activity, and genetics of pigment glands in cotton, in Proceedings of the Beltwide Cotton Production Research Conference, Atlanta, 1977, 244–258.Google Scholar
  2. 2.
    Chen, X. Y., Chen, Y., Heinstein, P. et al., Cloning, expression, and characterization of (+)-δ-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis, Arch. Biochem. Biophys., 1995, 324: 255.PubMedCrossRefGoogle Scholar
  3. 3.
    Alchannati, I., Patel, J. A. A., Liu, J. et al., The enzymatic cyclization of nerolidyl diphosphate by δ-cadinene synthase from cotton stele tissue infected withVerticillium dhaliae, Phytochemistry, 1998, 47: 961.CrossRefGoogle Scholar
  4. 4.
    Davila-Huerta, G., Hamada, H., Davis, G. D. et al., Cadinane-type sesquiterpenes induced inGossypium cotyledons by bacterial inoculation, Phytochemistry, 1995, 39: 531.CrossRefGoogle Scholar
  5. 5.
    Bohlmann, J., Meyer-Gauen, G., Croteau, R., Plant terpenoid synthases: molecular biology and phylogenetic analysis, Proc. Natl. Acad. Sci. USA, 1998, 95: 4126.PubMedCrossRefGoogle Scholar
  6. 6.
    Chappell, J., Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, 46: 521.CrossRefGoogle Scholar
  7. 7.
    Starks, C. M., Back, K., Chappell, J. et al., Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase, Science, 1997, 277: 1815.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, X. Y., Wang, M. S., Chen, Y. et al., Cloning and heterologous expression of a second cotton (+)-δ-cadinene synthase, J. Nat. Prod., 1996, 59: 944.PubMedCrossRefGoogle Scholar
  9. 9.
    Meng, Y. L., Jia, J.W., Liu, C. J. et al., Coordinated accumulation of (+)-δ-cadinene synthase mRNAs and gossypol in developing seeds ofGossypium hirsutum and a new member of the cad1 family fromG. arboreum, J. Nat. Prod., 1999, 62: 248.PubMedCrossRefGoogle Scholar
  10. 10.
    Bell, A. A., Stipanovic, R. D., O’Brien, D. H. et al., Sesquiterpen aldehyde quinones and derivatives in pigment glands ofGossypium, Phytochemistry, 1978, 17: 1297.CrossRefGoogle Scholar
  11. 11.
    Stanford, E. E., Viehoever, A., Chemistry and histology of the glands of the cotton plant, with notes on the occurrence of similar glands in related plants, J. Agr. Res., 1918, 13:419.Google Scholar
  12. 12.
    Alfandari, D., Darribere, T., A simple PCR method for screening cDNA libraries, PCR Method Appli., 1994, 4: 46.Google Scholar
  13. 13.
    Horsch, R. B., Fry, J. E., Hoffman, N. L. et al., A simple and general method for transferring genes into plants, Science, 1985, 227: 1229.CrossRefGoogle Scholar
  14. 14.
    Jefferson, R. A., Assaying chimeric genes in plants: theGUS gene fusion system, Plant Mol. Biol. Rep., 1987, 5: 387.CrossRefGoogle Scholar
  15. 15.
    Meyerowiz, E. M.,In situ hybridization in plant tissue, Plant Mol. Biol. Rep., 1987, 5: 242.CrossRefGoogle Scholar
  16. 16.
    Rikhel, N. V., Bednarek, S. Y., Lerner, D. R.,In situ hybridization in plant tissues, Plant Molecular Biology Manual, 1989, B9: 1.Google Scholar
  17. 17.
    Meier, I., Hahlbrock, K., Somssich, I. M., Elicitor-inducible and constitutivein vivo DNA footprints indicate novel cis-acting elements in the promoter of a parsely gene encoding pathogenesis related protein 1, Plant Cell, 1991, 3: 309.PubMedCrossRefGoogle Scholar
  18. 18.
    Rushton, P. J., Torres, J. V., Parniske, M. et al., Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes, EMBO J., 1996, 15: 5690.PubMedGoogle Scholar
  19. 19.
    Mace, M. E., Bell, A. A., Stipanovic, R. D., Histochemistry and isolation of gossypol and related terpenoids in roots of cotton seedlings, Phytopathol., 1974, 64: 1297.Google Scholar
  20. 20.
    Harrison, M. J., Dixon, R. A., Spatial patterns of expression of flavonid/isoflavonoid pathway genes during interactions between rootsof Medicago truncatula and the mycorrhizal fungusGlomus versiforme, Plant J., 1994, 6: 9.CrossRefGoogle Scholar
  21. 21.
    Facchini, P. J., Chappell, J., Gene family for an elicitor-induced sesquiterpene cyclase in tobacco, Proc. Natl. Acad. Sci. USA, 1992, 89: 11088.PubMedCrossRefGoogle Scholar
  22. 22.
    Yin, S., Mei, L., Newman, J. et al., Regulation of sesquiterpene cyclase gene expression: characterization of an elicitor-and pathogen-inducible promoter, Plant Physiol., 1997, 115:437.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Wanqi Liang
    • 1
  • Xiaoping Tan
    • 1
  • Xiaoya Chen
    • 1
  • Takashi Hashimoto
    • 2
  • Yasuyuki Yamada
    • 2
  • Peter Heinstein
    • 3
  1. 1.National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Shanghai Research Center of Life Sciences, Shanghai Institute for Biological SciencesChinese Academy of SciencesShanghaiChina
  2. 2.Graduate School of Biological SciencesNara Institute of Science and TechnologyNaraJapan
  3. 3.Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteUSA

Personalised recommendations