Advertisement

Proof of class number formulae by machine

A note on a Chowla’s conjecture
  • Guangheng Ji
  • Hongwen Lu
Article

Abstract

As an attempt to follow the direction of machine proof, a personal computer LE0386/25 is used to prove some class number formulae for certain imaginary quadratic number fields \({\Bbb Q}\left( {\sqrt p } \right)\),q=3, 7, 11, 19, 23, 31, 43 and 47) if the real quadratic number field \({\Bbb Q}\left( {\sqrt { - p} } \right)\) has class number one for a primep = 4N 2 + 1 (N is a positive integer).

Keywords

quadratic fields class number continued fractions computer 

References

  1. 1.
    Coldfeld, D., Gauss’ class number problem for imaginary quadratic fields,Bulletin (New Series) of the AMS, 1983, 13(1): 23.CrossRefGoogle Scholar
  2. 2.
    Zagier, D., L-series of eliptic curves, the Birch-Swinnerton-Dyer conjecture, and the class number problem of Gauss,Notices of the AMS, 1984, 31(7): 737.MathSciNetGoogle Scholar
  3. 3.
    Yokoi, H., Class number one problem for real quadratic fields (The conjecture of Gauss),Proc. of the Japan Academy, Ser A, 1988, 64(2): 53.MATHMathSciNetGoogle Scholar
  4. 4.
    Chowla, S., Friedlander, J., Class numbers and quadratic residues,Glasgow Math. J., 1976, 17: 47.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Tatuzawa, T., On a theorem of Siegel,JapaneseJ. Math., 1951, 21: 163.MATHMathSciNetGoogle Scholar
  6. 6.
    Lu, H.,Gauss’ Conjectures on the Quadratic Number Fields (in Chinese), Shanghai: Shanghai Scientific & Technical Publishers, 1994.Google Scholar
  7. 7.
    Goldfeld, D., The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer,Ann. Scuola Norm. Sup. Pisa, 1976, 3(4): 623.MATHMathSciNetGoogle Scholar
  8. 8.
    Lu, H., On the class-number of real quadratic fields,Scientia Sinica, 1979, (Special issue (II)): 118.Google Scholar
  9. 9.
    Lu, H., On the class-number of real quadratic fields with class number one (in Chinese), J.of USTC, 1980, 10(4): 133.Google Scholar
  10. 10.
    Lu, H., Kroecker Limit formula of real quadratic fields (I),Scientia Sinica, Ser. A, 1984, 27(12): 1233.MATHGoogle Scholar
  11. 11.
    Lu, H, Hirzebruch sum and class number of the quadratic fields,Chinese Science Bulletin, 1991, 36(14): 1145.MATHMathSciNetGoogle Scholar
  12. 12.
    Hua, L. K.,An Introduction to the Number Theory, New York: Springer-Verlag, 1982.Google Scholar

Copyright information

© Science in China Press 1998

Authors and Affiliations

  • Guangheng Ji
    • 1
  • Hongwen Lu
    • 1
  1. 1.Department of MathematicsTongji UniversityShanghaiChina

Personalised recommendations