Science in China Series A: Mathematics

, Volume 40, Issue 8, pp 799–806 | Cite as

Homogeneous expansions of normalized biholomorphic convex mappings overB P

  • Taishun Liu
  • Wenjun Zhang


The power series expansions of normalized biholomorphic convex mappings on the Reinhardt domain\(B^p = \left\{ z \right. \in \mathbb{C}^n :\left\| { z } \right\| _p = [\mathop \sum \limits_{j = 1} \left| {Z_j } \right| ^p ]^{1/p}< 1\} (p > 2 )\) are studied. It is proved that the first (k+1) terms of the expansions of the jth componentf j of such a mapf depend only onz j , for 1 ⩽j⩽n, wherek is the natural number that satisfiesk < ρ ⩽k +I. Whenp→ ∞, this gives the result on the unit polydisc obtained by Suffridge in 1970.


biholomorphic convex mappings Reinhardt domains Schwarz-type lemma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnard, R. W., FitzGerald, G. H., Gong, S., The growth and 1/4 theorems for starlike mappings in Cn,Chin.Sci. Bull., 1989. 34:161.Google Scholar
  2. 2.
    Gong Sheng, Biholomorphic mappings in several complex variables,Contemp. Math., 1993, 142:15.Google Scholar
  3. 3.
    Gong Sheng.Convex and Starlike Mappings in Several Complex Variables, Monographs on Pure and Applied Math. No. 34 (in Chinese), Beijing: Science Press, 1995.Google Scholar
  4. 4.
    Barnard, R. W., FitzGerald, C. H., Gong, S., A distortion theorem for biholomorphic mappings in C2,Trans. Amer. Math. Soc., 1994, 344:902.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Gong Sheng, Wang Shikun, Yu Qihuang, Biholomorphic mappings of ball in C,Pacific J. Math., 1993, 161:2287.Google Scholar
  6. 6.
    Suffridge, T. J., The principle of subordination applied to functions of several variables,Pacific J. Math., 1970, 33:241.MATHMathSciNetGoogle Scholar
  7. 7.
    Liu, T. S., Gong, S, The growth theorem of biholomorphic convex mappings onBp, Chin. Quart. J. Math. (in Chinese), 1991. 6(1):78.MathSciNetGoogle Scholar

Copyright information

© Science in China Press 1997

Authors and Affiliations

  • Taishun Liu
    • 1
  • Wenjun Zhang
    • 2
  1. 1.Department of MathematicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of MathematicsShenzhen UniversityShenzhenChina

Personalised recommendations