, Volume 11, Issue 6, pp 705–715 | Cite as

Magnetic and transport properties of some light rare earth tungstates

  • Naseeb Dar
  • H B Lal


Measurements relating to molar magnetic susceptibility, dc electrical conductivity and thermoelectric power of Nd, Sm, Eu and Gd are reported. The ac electrical conductivity at a few temperature ranges is also given. It is found that it follows the Curie-Weiss law behaviour and this has been attributed to the crystal field effect. The experimental value of Bohr magneton for the magnetic ions has been found to be in good agreement with theory. Thermoelectric power is negative in the measured temperature range suggesting these materials to bep-type semi-conductors and holes as the dominant charge carriers. The results are explained using band theory.


Magnetic susceptibility electrical conductivity thermo-electric power rare-earth tungstates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler D 1968Solid State Phys. 21 1ADSGoogle Scholar
  2. Appel J 1968Solid State Phys. 21 193CrossRefGoogle Scholar
  3. Austin I G and Mott N F 1969Adv. Phys. 18 41CrossRefADSGoogle Scholar
  4. Brixner L H and Sleight A W 1973Mat. Res. Bull. 8 1269CrossRefGoogle Scholar
  5. Bosman A J and Van Dall H J 1970Adv. Phys. 19 1CrossRefADSGoogle Scholar
  6. Dar N 1976Electrical transport and magnetic properties of some rare-earth compounds, Ph.D. thesis (Gorakhpur University)Google Scholar
  7. Dar N and Lal H B 1976Pramana 7 245CrossRefADSGoogle Scholar
  8. Herman T C and Honing J M 1976Thermoelectric power and thermomagnetic effects and applications (New York: McGraw Hill) p 142Google Scholar
  9. Lal H B and Dar N 1975Z. Naturforsch. 30a 1783ADSGoogle Scholar
  10. Lal H B and Dar N 1976aPhysica 84 254Google Scholar
  11. Lal H B and Dar N 1976bIndian J. Pure Appl. Phys. 14 788Google Scholar
  12. Lal H B and Dar N 1977J. Phys. Chem. Solids 38 161CrossRefADSGoogle Scholar
  13. Lal H B, Dar N and Kumar A 1974J. Phys. C7 4335ADSGoogle Scholar
  14. Lal H B, Dar N and Kumar A 1975J. Phys. C8 2745ADSGoogle Scholar
  15. Lal H B, Dar N and Lundgren L 1976aJ. Phys. Soc. Jpn. 41 1216CrossRefADSGoogle Scholar
  16. Lal H B, Verma B K and Dar N 1976bIndian J. Cryogenics 1 119Google Scholar
  17. Loyenga H 1965Physica 31 401CrossRefADSGoogle Scholar
  18. Morrish A H 1966The physical principle of magnetism (New York: John Wiley) p 529Google Scholar
  19. Martin D H 1967Magnetism in solids (London: Ileffe Book Ltd) p 305Google Scholar
  20. Methfessel S and Mattis D C 1968Handbuch der Phys. ed S Flugge 18th ed. (Heidelberg: Springer Verlag) p 389Google Scholar
  21. Nassau K, Levienstein H J and Loianeono G M 1965J. Phys. Chem. Solids 26 1805CrossRefADSGoogle Scholar
  22. Pratap V and Verma B K 1978Pramana 10 173CrossRefADSGoogle Scholar
  23. Russel H W 1935J. Am. Ceram. Soc. 18 1CrossRefGoogle Scholar
  24. Taylor K N R 1970Contemp. Phys. 11 423CrossRefADSGoogle Scholar
  25. Taylor K N R 1971Adv. Phys. 20 551CrossRefADSGoogle Scholar
  26. Thomas J H and Seinko M J 1974J. Phys. Chem. Solids 61 3920Google Scholar
  27. Spedding F H 1974 inEncyclopaedia Britannica 15th ed p 515Google Scholar
  28. Sumi H 1972J. Phys. Soc. Jpn. 33 327CrossRefADSGoogle Scholar
  29. Van Vleck J H 1932Theory of electric and magnetic susceptibility (Oxford: University Press) p 226Google Scholar

Copyright information

© Indian Academy of Sciences 1977

Authors and Affiliations

  • Naseeb Dar
    • 1
  • H B Lal
    • 1
  1. 1.Department of PhysicsUniversity of GorakhpurGorakhpur

Personalised recommendations