Advertisement

Pramana

, Volume 44, Issue 6, pp 511–518 | Cite as

Cosmic strings in Bianchi III spacetime: Integrable cases

  • S D Maharaj
  • P G L Leach
  • K S Govinder
Article

Abstract

We investigate the integrability of cosmic strings in Bianchi III spacetime using a symmetry analysis. The behaviour of the model is reduced to the solution of a single second order nonlinear differential equation. We show that this equation has a rich structure and admits an infinite family of solutions. Our class of solutions extends special cases previously obtained by Tikekar and Patel [Gen. Relativ. Gravit. 24, 397 (1992)].

Keywords

Cosmology strings integrable 

PACS Nos

04.20 98.90 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ya B Zel’dovich,Mon. Not. R. Astron. Soc. 192, 663 (1980)ADSGoogle Scholar
  2. [2]
    T W S Kibble,J. Phys. A9, 1387 (1976)ADSGoogle Scholar
  3. [3]
    A Vilenkin,Phys. Rev. D24, 2982 (1981)ADSGoogle Scholar
  4. [4]
    J R Gott,Astrophys. J. 288, 422 (1985)CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    D Garfinkle,Phys. Rev. D32, 1323 (1985)ADSMathSciNetGoogle Scholar
  6. [6]
    P S Letelier,Phys. Rev. D20, 1294 (1979)ADSMathSciNetGoogle Scholar
  7. [7]
    J Stachel,Phys. Rev. D21, 2171 (1980)ADSMathSciNetGoogle Scholar
  8. [8]
    K D Krori, T Chaudhuri, C R Mahanta and A Mazumdar,Gen. Relativ. Gravit. 22, 123 (1990)CrossRefADSGoogle Scholar
  9. [9]
    A Banerjee, A K Sanyal and S Chakrabarty,Pramana — J. Phys. 34, 1 (1990)CrossRefADSGoogle Scholar
  10. [10]
    Ramesh Tikekar and L K Patel,Gen. Relativ. Gravit. 24, 397 (1992)CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    A K Head,Comp. Phys. Commun. 77, 241 (1993)CrossRefADSMathSciNetMATHGoogle Scholar
  12. [12]
    Peter J Olver,Applications of Lie groups to differential equations, second edition (New York, Springer-Verlag, 1993)MATHGoogle Scholar
  13. [13]
    I J Homer Lane,Am. J. Sci. Arts 4, 57 (1869–1870)Google Scholar
  14. [14]
    R Emden,Gaskugeln, Anwendungen der mechanischen Warmen-theorie auf Kosmologie und meteorologische Probleme, Leipzig, Teubner (1907)Google Scholar
  15. [15]
    R H Fowler,Q. J. Math. 45, 289 (1914);Google Scholar
  16. [15a]
    R H Fowler,Mon, Not. R. Astron. Soc. 91, 63 (1930)ADSGoogle Scholar
  17. [16]
    J Patera and P Winternitz,J. Math. Phys. 18, 1449 (1977)CrossRefADSMathSciNetMATHGoogle Scholar
  18. [17]
    S Lie,Differentialgleichungen, (New York, Chelsea, 1967)Google Scholar
  19. [18]
    V Ermakov,Univ. Izv. Kiev Ser. III 9, 1 (1880)Google Scholar
  20. [19]
    Edmund Pinney,Proc. Am. Math. Soc. 1, 681 (1950)CrossRefMathSciNetGoogle Scholar
  21. [20]
    I S Gradshteyn and I M Ryzhik,Table of integrals, series and products. fourth edition, edited by Allan Jeffrey (Academic Press, San Diego, 1980)Google Scholar
  22. [21]
    K S Govinder and P G L Leach,Integrability analysis of the Emden-Fowler equation, Preprint: Department of Mathematics, University of the Aegean (1994)Google Scholar
  23. [22]
    P Painlevé,Acta Math. 25, 1 (1902)CrossRefMathSciNetGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1995

Authors and Affiliations

  • S D Maharaj
    • 1
    • 2
  • P G L Leach
    • 1
    • 2
  • K S Govinder
    • 1
    • 2
  1. 1.Department of Mathematics and Applied MathematicsUniversity of NatalDalbridgeSouth Africa
  2. 2.Visiting: Inter-University Centre for Astronomy and AstrophysicsGaneshkhind, PuneIndia

Personalised recommendations