Advertisement

Biologia Plantarum

, Volume 29, Issue 2, pp 81–87 | Cite as

Phenolic substances in tissue cultures ofCentaurium erythraea

  • L. Mebavý
Article

Abstract

Phenolic compounds l,2,3-trihydroxy-5-methoxyxanthone, l-hydroxy-3,5,6,7, 8-pentamethoxyxanthone, and l,8-dihydroxy-2,3,4,6-tetramethoxyxanthone predominate in the callus tissue ofCentaurium erythraea, their content increasing with culture age. By contrast, the contents of the derivatives of cinnamic, chlorogenic, and ferulic acids decrease or do not change. In the cell suspension culture ofC. erythraea a larger amount of xanthones is synthesized than in the callus from which the suspension culture was derived. The content of phenolic acids is lower in the suspension culture than in the callus, but a larger number of low-molecular-mass phenolic substances occurs in the suspension culture than in the callus tissue.

Keywords

Suspension Culture Ferulic Acid Phenolic Acid Isoflavone Cell Suspension Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitohinson, P. A.,Mac Leod, A. J.,Yeoman, M. M.: Growth patterns in tissue (callus) cultures. - In: Stbeet, H. E. (ed.): Plant Tissue and Cell Culture. (Botanical Monographs. Vol. 11). Pp. 267–306. University of California Press, 1977.Google Scholar
  2. Barešová, H.,Kamínkk, M.: Light induced somatic embryogenesis in suspension cultures ofCentaurium erythraea. - In: Novak, F. J., Havel, L., DoleŽel. J. (ed.): Plant Tissue and Cell Culture Application to Crop Improvement. (Proceedings of the International Symposium, Olomouc, Czechoslovakia). Pp. 163 –164, Praha 1984.Google Scholar
  3. Brunet, G., Ibrahim, R. K.: Tissue culture of citrus peel and its potential for flavonoid synthesis. -Z. Pflanzenphysiol.69: 152–162, 1973.Google Scholar
  4. Davies, M. E.: Polyphenol synthesis in cell suspension cultures of Paul’s Scarlet rose. - Planta104: 50–65, 1972.CrossRefGoogle Scholar
  5. Forrest, G. I.:Studies on the polyphenol metabolism of tissue cultures derived from the tea plant(Camellia sinensis L.).- Biochem. J.113: 765–772, 1969.PubMedGoogle Scholar
  6. King, P. J.,Street, H. E.: Growth patterns in cell cultures. - In: Street, H. E. (ed.): Plant Tissue and Cell Culture. (Botanical Monographs. Vol. 11). Pp. 308–387. University of California Press, 1977.Google Scholar
  7. Kurz, W. G. W.: Variation in indole alkaloid accumulation in cell suspension cultures fromGatharanthus roseus cultivars. - In: Prospects in Plant Cell Science and Technology. Pp. 11–20. Kyoto Symposia on Bioscience, 1984.Google Scholar
  8. Lee, T. T., Carew, D. P., Rosazza, J.:Apocynum cannabinum tissue cultures: growth and chemical analysis. - Lloydia 35: 150–156, 1972.PubMedGoogle Scholar
  9. Liau, S., Ibrahim, R. K.: Biochemical differentiation in flax tissue culture: phenolic compounds. -Can. J. Bot.31: 820–823, 1973.CrossRefGoogle Scholar
  10. Linsmaier, E. M., Skoog F.: Organic growth factor requirements of tobacco tissue cultures. - Physiol. Plant.18: 100–127, 1965.CrossRefGoogle Scholar
  11. Mabry, T. J., Markham, K. R., Thomas, M. B.: The Systematic Identification of Flavonoids. - Springer Verlag, New York 1970.Google Scholar
  12. Meravý, L.: The effect of calcium deficiency on the content of phenolic compounds and auxins in wheat. - Acta Univ. Carolinae — Biol.1981: 379–396, 1985.Google Scholar
  13. Miana, G. A., Al-Hazimi, H. M. G.: Xanthones ofCentaurium pulchellum. - Phytochemistry83: 1637–1638, 1984.CrossRefGoogle Scholar
  14. Neshta, N. M., Glyzin, V. I., Nikolaeva, G. G., Sheïchenko, V. I.: [The new xanthonic compound fromCentaurium erythraea.] In Russ. - Khim prirod. Soedin.19: 106–107, 1983b.Google Scholar
  15. Neshta, N. M., Glyzin, V. I., Patudin, A. V.: [The new xanthonic compound fromCentaurium erythraea. IV.] In Russ. - Khim. prirod. Soedin.20: 110, 1984.Google Scholar
  16. Neshta, N. M., Glyzin, V. I., Savina, A. A., Patudin, A. V.: [The new xanthonic compound fromCentaurium erythraea. III.] In Russ. - Khim. prirod. Soedin.19: 787, 1983a.Google Scholar
  17. Neshta, N. M., Nikolaeva, G. G., Sheichenko, V. I., Patudin, A. V.: [The new xanthonic compound fromCentaurium erythraea.] In Russ. - Khim. prirod. Soedin.17: 258, 1982.Google Scholar
  18. Parra, M., Picher, M. T., Seoane, E., Tortajada, A.: New xanthones isolated fromCentaurium linarifolium. - J. nat. Products (Lloydia)47: 123–126, 1984a.CrossRefGoogle Scholar
  19. Parra, M., Seoane, E., Tortajada, A.: Additional new xanthones isolated fromCentaurium linarifolium. - J. nat. Products (Lloydia)47: 868–871, 1984b.CrossRefGoogle Scholar
  20. Sahai, O. P., Shuler, M. L.: Environmental parameters influencing phenolic production by batch cultures ofNicotiana tabacum. - Biotechnol. Bioeng.26: 111–120, 1984.CrossRefPubMedGoogle Scholar
  21. Slabecka-Szweykowska, A.: On the condition of anthocyanin formation inVitis vinifera tissue cultivatedin vitro. - Acta Soc. Bot. Pol.21: 537–576, 1952.Google Scholar
  22. Van der Suluis,W. G.: Sueeoiridoids and Xanthones in the GenusCentaurium Hill(Gentianaceae). -Drukkerij Elinkwijk bv., Utrecht 1985.Google Scholar
  23. Van der Suluis,W. G., Labadie, R. P.: Polyoxygenated xanthones ofCentaurium littorale. -Phytochemistry 24: 2601–2605, 1965.CrossRefGoogle Scholar
  24. Takagi, S., Yamaki, M.: Studies on the constituents ofErythraea - Centaurium (Linné) Persoon. III. Isolation and structure of xanthones. - Yakugaku Zasshi102: 546–548, 1982.Google Scholar

Copyright information

© Academia 1987

Authors and Affiliations

  • L. Mebavý
    • 1
  1. 1.Institute of Experimental BotanyCzechoslovak Academy of SciencesPraha 6Czechoslovakia

Personalised recommendations