Skip to main content
Log in

Distribution of trace elements in spinel and garnet peridotites

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

The distribution of trace elements in the upper mantle has been discussed on the basis of the trace element abundances in bulk rocks and constituent minerals of two spinel and garnet facies peridotite xenoliths in alkali basalts from eastern China. The data presented are consistent with the suggestion that highly incompatible elements (Rb, Ba, Th, U, Sr, Nb, Ta) mainly reside in intergranular components, and to a lesser extent in fluid inclusions in minerals. The LILE composition in olivine and orthopyroxene can be seriously affected by the presence of fluid inclusions. Consequently the subsolidus partitioning of the LILE cannot be used to infer the olivine-melt and orthopyroxene-melt partition coefficients for these elements. There is a significant difference in (Opx/Cpx)HREE ratios for spinel and garnet peridotites, suggesting a P-T control on equilibrium partition coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frey, F. A., Rare earth abundances in a high-temperature peridotite intrusion, Geochim. Cosmochim. Acta, 1969, 33: 1429.

    Article  Google Scholar 

  2. Shimizu, N., Rare earth elements in garnets and clinopyroxenes from garnet lherzolites nodules in kimberlites, Earth Planet. Sci. Lett., 1975, 25: 26.

    Article  Google Scholar 

  3. Stosch, H. G., Rare earth element partitioning between minerals from anhydrous spinel peridotite xenoliths, Geochim. Cosmochim. Acta, 1982, 46: 793.

    Article  Google Scholar 

  4. McDonough, W. F., Stosch, H. -S., Ware, N. G., Distribution of titanium and the rare earth elements between peridotitic minerals, Contrib. Mineral. Petrol., 1992, 110: 321.

    Article  Google Scholar 

  5. Rampone, E., Botazzi, P., Ottolini, L., Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotites, Nature, 1991, 354: 518.

    Article  Google Scholar 

  6. Zindler, A., Jagoutz, E., Mantle cryptology, Geochim. Cosmochim. Acta, 1988, 52: 319.

    Article  Google Scholar 

  7. Rosenbaum, J. M., Zindler, A., Rubenston, J. L., Mantle fluids: evidence from fluid inclusions, Geochim. Cosmochim. Acta, 1996, 60: 3229.

    Article  Google Scholar 

  8. Bodinier, J. -L., Merlet, C., Bedini, R. M. et al., The distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox, Geochim. Cosmochim. Acta, 1996, 60: 545.

    Article  Google Scholar 

  9. Eggins, S. M., Rudnick, R. L., McDonough, W. F., The composition of peridotites and their minerals: a laser-ablation ICP-MS study, Earth Planet. Sci. Lett., 1998, 154(1–4): 53.

    Article  Google Scholar 

  10. Tatsumoto, M., Basu, A. R., Huang, W. K. et al., Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere, Earth Planet. Sci. Lett., 1992, 113: 107.

    Article  Google Scholar 

  11. Huang, W. K., Wang, J. W., Basu, A. R. et al., A study of REE and Pb-Sr-Nd of garnet peridotite xenoliths from Mingxi, Fujiang Province, Geochimica, 1992, 21(2): 101.

    Google Scholar 

  12. Liu, Y., Liu, H. C., Li, X. H., Rapid and precise analyze of more than 40 elements using ICP-MS, Geochimica, 1996, 25(6): 552.

    Google Scholar 

  13. Sun, S. -S., McDonough, W. F., Chemical and isotopic systematic of oceanic basalt: Implication for mantle composition and process, in Magmatism in the Ocean Basin (eds. Saunderes, A. D., Norry, M. J.), Oxford: Geol. Soc. Spec. Publ., Blackwell Sci. Publ., 1989, 313–346.

    Google Scholar 

  14. Green, T. H., Experimental studies of trace element partitioning applicable to igneous petrogenesis—Sedona 16 years later, Chem. Geol., 1994, 117: 1.

    Article  Google Scholar 

  15. Xu, Y. G., Trace element characteristics and origin of intergranular components in peridotites, Chinese Science Bulletin, 2000, 45, in press.

  16. Ionov, D. A., Hoffmann, A. W., Shimizu, N., Metasomatism-induced melting in mantle xenoliths from Mongolia, J. Petrol., 1994, 35: 753–785.

    Google Scholar 

  17. Zack, T., Foley, S. F., Jenner, G. A., A consistent partition coefficient set for clinopyroxene, amphibole and garnet from laser ablation microprobe analysis of garnet pyroxenites from Kakanui, New Zealand, N Jb Miner. Abh., 1997, 172: 23.

    Google Scholar 

  18. Hart, S. R., Dunn, T., Experimental cpx/melt partitioning of 24 trace elements, Contrib. Mineral. Petrol., 1993, 113: 1.

    Article  Google Scholar 

  19. Beattie, P., Ford, C., Russell, D., Partition coefficients for olivine-melt and orthopyroxene-melt system, Contrib. Mineral. Petrol., 1991, 109: 212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y. Distribution of trace elements in spinel and garnet peridotites. Sci. China Ser. D-Earth Sci. 43, 166–175 (2000). https://doi.org/10.1007/BF02878146

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02878146

Keywords

Navigation