Advertisement

Science in China Series B: Chemistry

, Volume 40, Issue 3, pp 286–293 | Cite as

Energy transfer kinetics of phycoerythrocyanins (PECs) from the cyanobacteriumAnabaena variabilis (I)

  • Jingmin Zhang
  • Jianping Zhang
  • Zixuan Yang
  • Jingquan Zhao
  • Lijin Jiang
  • Jianxin Chen
  • Tong Ye
  • Qiyuan Zhang
Article

Abstract

The exritation energy transfer processes in monomeric phycoerythrocyanins (PEC) have been studied in detail using steady-state and time-resolved fluorescence spectra techniques as well as the deconvolution tech-nique of spectra. The results indicate that the energy transfer processes should take place between α84,-PVB and β84- or β155-PCB chromophores. the time constants of energy transfer are 34.7 and 130 ps individually; the component with lifetime of 1.57 ns originates from the fluorescence lifetime of the terminal emitter of β84- and /or β155 -PCB chro-mophores; and the component with lifetime of 515 ps might be assigned to the energy transfer between two PCB chro-mophores of β subunit.

Keywords

phycobilisome phycoerythrocyanin deconvolution spectrum time-resolved fluorescence energy transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fuglistaller, P., Widmer, H., Sidler, W.et al., Isolation and characterization of phycoerythrocyanin and chromatic adapta- tion of the thermophilic cyanobacteriumMastigocladus lummosus, Arch. Microbiol., 1982, 129: 268.CrossRefGoogle Scholar
  2. 2.
    Fuglistaller, P., Sauter, F., Zuber, H., The complete amino-acid sequence of both subunits of phycoerythrocyanin from the thermophilic cyanobacteriumMustigocladu, lammosus, Hoppe-Seylers Z. Physiol. Chem., 1983, 364: 691.Google Scholar
  3. 3.
    Duerring, M., Huber, R., Bode, W.et al., Refind 3-dimensional structure of phycoerythrocyanin from the cyanobacteriumMastigocladus lammosus at 0.27 nm,J. Mol. Biol., 1990, 211: 633.CrossRefGoogle Scholar
  4. 4.
    Maruthi Sai, P. S. Seibzehnrubl, S.. Mahajan, S.et a1., Fluorescence and circular dichroism studies on the phycoery- throcyanins from the cyanobacteriumWestiellopsis prolifica, Photochem. Photobiol., 1993, 570: 71.Google Scholar
  5. 5.
    Schneider, S., Jager, W., Zhou, Z.-J.et al., Photophysics of phycoerythrocyanins from the cyanobacteriumWestiellopsis prolifica studied by time-resolved fluorescence and coherent anti-stokes Rarnan scattering spectroscopy,J. Photochem. Photobiol. B: Biol., 1994, 26: 75.CrossRefGoogle Scholar
  6. 6.
    Hucker, M., Schweizer, G., Holzwarth, A. R.et a1., Studies on chromophore coupling in isolated phycobiliproteins (IV): Femtcxecond transient absorption study of ultrafast excited state dynamics in trimeric phycoerythricyanin complexes,Photochem. Photobiol., 1993, 57: 76.CrossRefGoogle Scholar
  7. 7.
    Holzwarth, A. R., Structure-function relationships and energy transfer in phycobiliprotein antennae,Physiol. Plant., 1991. 83: 518.CrossRefGoogle Scholar
  8. 8.
    Maruthi Sai, P. S., Siebzehnrubl, S., Mahajan, S.et al., Phycoerythrocyanins fromWestiellopsis prolifica andNotroc rigulare: Characterization of the phycoviolobilin chromophore in both states,Photochem. Photobiol., 1992, 55: 119.CrossRefGoogle Scholar
  9. 9.
    Mimro, M., Fuglistaller, P., Rumbel, R.et al., Functional assignment of chromophores and energy transfer in C-phycocyanin isolated from the thermophilic cyanobacteriumMastigocladus lamminsus, Biochim. Biophys. Acta, 1986, 848: 155.CrossRefGoogle Scholar
  10. 10.
    Siebzehnrubl, S., Fischer, R., Kufer, W.et al., Photochemistry of phycobiliproteins: Reciprocity of reversible photochemistry and aggregation in phycoerythrocyanin fromMastigocladus lamminsus, Photochem. Photobiol., 1989, 49:753.CrossRefGoogle Scholar
  11. 11.
    Falk, H., Miller, N., Force field calculations on linear polypyrrole systems,Tetrahedron, 1983, 38: 1875.CrossRefGoogle Scholar
  12. 12.
    Holzwarth, A. R., Bettersmann, E., Studies on chromophore coupling in isolated phycobiliproteins (III): Picosecond excited state kinetics and time-resolved fluorescence spectra of different allophycocyanins fromMastigocladus lamminsus, Biophys. J., 1990, 57: 2133.Google Scholar
  13. 13.
    Debreczeny, M. P., Sauer, K., Zhou, J., Monomeric C-phycocy-anin at room temperature and 77 K: Resolution of the absorption and fluorescence spectra of the individual chromophores and the energy transfer rate constants,J.Phys. Chem., 1993, 97: 9852.CrossRefGoogle Scholar
  14. 14.
    Holzwarth, A. R., Wendler, J., Sater, G. W., Studies on chromophore coupling in isolated phycobiliproteins (U): Picosecond energy transfer kinetics and time-resolved fluorescence spcetra of C-phycocyanin from Synechocccus 6301 as a function of the aggregation state,Biophy. J., 1987, 51: 1.CrossRefGoogle Scholar

Copyright information

© Science in China Press 1997

Authors and Affiliations

  • Jingmin Zhang
    • 1
  • Jianping Zhang
    • 1
  • Zixuan Yang
    • 1
  • Jingquan Zhao
    • 1
  • Lijin Jiang
    • 1
  • Jianxin Chen
    • 2
  • Tong Ye
    • 2
  • Qiyuan Zhang
    • 2
  1. 1.Institute of Pliotographic ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Ultrafast Spectroscopy ChamberState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijingChina

Personalised recommendations