Folia Microbiologica

, Volume 22, Issue 5, pp 386–395 | Cite as

Relationship between the structure of carbonylcyanide phenylhydrazones and inhibition of growth of microorganisms, stimulation of respiration of yeast cells and rat liver mitochondria

  • M. Greksák
  • J. Šubík
  • Z. Barošková
  • O. Greksáková


The effect of ten derivatives of carbonylcyanide phenylhydrazone on growth of bacteria, yeast and different species of filamentous fungi was investigated. In yeast and mitochondria isolated from rat liver the effect of these derivatives on the respiratory activity was also followed. The relative efficiency of the individual derivatives of earbonylcyanide phenylhydrazone was determined on the basis of the results obtained. It was shown that derivatives, in which the substituent on the benzene ring causes simultaneously an increase of acidity and lipophilicity of the derivative as compared with the non-substituted carbonylcyanide phenylhydrazone (4-trifluoromethoxy-, 3-chloro-, 4-chloro and 3,4-dichloroderivatives) were most effective.


Yeast Cell Filamentous Fungus Growth Yield Respiratory Activity Maximum Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert A., Serjeant E.: Ionization constants of acids and bases, p. 64. (In Russian) Khimia Publ. House Moscow 1964.Google Scholar
  2. Barker J. L., Levitan H.: Mitochondrial uncoupling agents. Effects on membrane permeability of molluscan neurons.J. Membrane Biol. 25, 361 (1975).CrossRefGoogle Scholar
  3. Carafoli E., Rossi C. S.: The effect of dinitrophenol on the permeability of mitochondria membrane.Biochem. Biophys. Bes. Commun. 29, 153 (1967).CrossRefGoogle Scholar
  4. Goldsby R. A., Heytler P. G.: Uncoupling of oxidative phosphorylation by carbonylcyanide phenylhydrazones. II. Effects of earbonylcyanide m-chlorophenylhydrazone on mitochondrial respiration.Biochemistry 2, 1142 (1963).PubMedCrossRefGoogle Scholar
  5. Greksák M.: A contribution to the interaction of carbonylcyanide phenylhydrazone derivates with yeast cells.Biológia (Bratislava)28, 445 (1973).Google Scholar
  6. Hansch C.: Quantitative structure-activity relationship in drug design, p. 271, in E. J. Ariens (ed.)Drug Design, Vol. 1, Academic Press, New York 1971.Google Scholar
  7. Hanstein W. G.: Uncoupling of oxidative phosphorylation.Biochim. Biophys. Acta 456, 129 (1976).PubMedGoogle Scholar
  8. Hanstein W. G., Hatefi Y.: Trinitrophenol: A membrane impermeable uncoupler of oxidative phosphorylation.Proc. Natl. Acad. Sci. USA. 71, 288 (1974).PubMedCrossRefGoogle Scholar
  9. Harold F. M.: Conservation and transformation of energy by bacterial membranes.Bacteriol. Rev. 36, 172 (1972).PubMedGoogle Scholar
  10. Hatefi Y.: Energy conservation and uncoupling in mitochondria.J. Supramol. Struct. 3, 201 (1975).PubMedCrossRefGoogle Scholar
  11. Hemker H. C.: Lipid solubility as a factor influencing the activity of uncoupling phenols.Biochim. Biophys. Acta 63, 46 (1962).PubMedCrossRefGoogle Scholar
  12. Hemker H. C.: The mode of action of dinitrophenols on the different phosphorylating steps.Biochim. Biouhys. Acta 81, 9 (1964).Google Scholar
  13. Hepfer U., Lehninger A. I., Thompson T. E.: Protonic conductance across phospholipid bilayer membrane induced by uncoupling agents for oxidative phosphorylation.Proc. Natl. Acad. Sci. USA. 59, 484 (1968).CrossRefGoogle Scholar
  14. Heytler P. G.: Uncoupling of oxidative phosphorylation by carbonylcyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts.Biochemistry 2, 357 (1962).CrossRefGoogle Scholar
  15. Heytler P. G., Prichard W. W.: A new class of uncoupling agents —carbonyl cyanide phenylhydrazones.Biochem. Biophys. Res. Commun. 7, 272 (1962).PubMedCrossRefGoogle Scholar
  16. Jacobs E. E., Jacob M. H., Sanadi D. R., Bradley L. B.: Uncoupling of oxidative phosphorylation by cadmium ion.J. Biol. Chem. 223, 2112 (1956).Google Scholar
  17. Kessler R. J., Tyson C. A., Green D. E.: Mechanism of uncoupling in mitochondria: Uncouplers and ionophores for cycling cations and protonsProc. Natl. Acad. Sci. USA. 73, 003141 (1976).CrossRefGoogle Scholar
  18. Kollár K.: Electrochemical studies on respiration in yeasts. I. Oxygen consumption. (In Czech)Acta Facult. R.N. Univ. Commen. 12, 371 (1968).Google Scholar
  19. Kováč L., Hrušovská E.: The effect of carbonyl cyanide p-trifluormethoxy-phenylhydrazone on yeast cells.Folia Microbiol. 12, 56 (1967).Google Scholar
  20. Kováč L., Bednárová H., Greksák M.: Oxidative phosphorylation in yeast. I. Isolation and properties of phosphorylating mitochondria from stationary phase cells.Biochim. Biophys. Acta 153, 32 (1968).CrossRefGoogle Scholar
  21. Libermann E. A., Topaly U. O., Tsofina L. M., Jasaitis A. A., Skulachev U. P.: Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria.Nature 222, 1976 (1969).CrossRefGoogle Scholar
  22. Loomis W. F., Lipmann F.: Reversible inhibition of the coupling between phosphorylation and oxidation.J. Biol. Chem. 173, 807 (1948).PubMedGoogle Scholar
  23. Miko M., Chance B.: Isothiocyanates. A new class of uncouplers.Biochim. Biophys. Acta 396, 165 (1975).PubMedCrossRefGoogle Scholar
  24. Mitchel P.: A chemiosmotic hypothesis for the mechanism of oxidative and photosynthetic phosphorylation.Nature 191, 144 (1961).CrossRefGoogle Scholar
  25. Mitchell P.: Vectorial chemistry and the molecullar mechanics of chemiosmotic coupling: Power transmission by proticity.Biochem. Soc. Trans. 4, 399 (1976).PubMedGoogle Scholar
  26. Mitchel P., Moyle J.: Acid-base titration across the membrane system of rat-liver mitochondria.Biochem. J. 104, 588 (1967).Google Scholar
  27. Parker V. H.: Effect of nitrophenols and halogenophenols on the enzyme activity of rat liver mitochondriaBiochem. J. 69, 306 (1958).PubMedGoogle Scholar
  28. Parker V. H.: Uncouplers of rat-liver mitochondrial oxidative phosphorylation.Biochem. J. 97, 658 (1965).PubMedGoogle Scholar
  29. Slayman C. W., Rees D. C., Orchard P. P., Slayman C. L.: Generation of adenosinetriphosphate in cytochrome-deficient mutants ofNeurospora.J. Biol. Chem. 250, 396 (1975).PubMedGoogle Scholar
  30. Šubíková V., Šubík J.: Energetic aspects of spore germination in filamentous fungi.Folia Microbiol. 19, 367 (1974).CrossRefGoogle Scholar
  31. Weinbach E. C.: Pentachlorphenol and mitochondrial adenosine triphosphatase.J. Biol. Chem. 221, 609 (1956).PubMedGoogle Scholar
  32. Weinbach E. C.: A procedure for isolating stable mitochondria from rat liver and kidney.Anal. Biochem. 2, 335 (1961).PubMedCrossRefGoogle Scholar
  33. Zsolnay T.: Versuche zur Entdeckung Neuer Fungistatika —VII. Die Antimikrobielle Wirkung von Aryl-azo-methylen-gruppe Enthalbenden Verbindungen.Biochem. Pharmacol. 13, 285 (1964).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1977

Authors and Affiliations

  • M. Greksák
    • 1
  • J. Šubík
    • 1
    • 2
  • Z. Barošková
    • 1
    • 3
  • O. Greksáková
    • 1
    • 4
  1. 1.Institute of Experimental Veterinary MedicineIvanka pri Dunaji
  2. 2.Food Research InstituteBratislava
  3. 3.Department of Biochemistry, Faculty of ScienceKomenský UniversityBratislava
  4. 4.Department of Physical Chemistry, Pharmaceutical FacultyKomenský UniversityBratislava

Personalised recommendations