Advertisement

Journal of Molecular Neuroscience

, Volume 2, Issue 2, pp 101–107 | Cite as

Effects of continuous diazepam administration on GABAA subunit mRNA in rat brain

  • C. Heninger
  • N. Saito
  • J. F. Tallman
  • K. M. Garrett
  • M. P. Vitek
  • R. S. Duman
  • D. W. Gallager
Article

Abstract

Rats treated chronically with diazepam develop tolerance to diazepam effects and show changes in sensitivity of GABAergic systems. In order to investigate possible molecular mechanisms associated with these changes, we have evaluated the effects of acute and chronic diazepam treatment on levels of mRNA for the α1 and β1 subunits of the GABAA receptor. Northern blots were hybridized with32P-labeled GABA α1 and β1 cDNA probes, and resulting bands were quantified by autoradiography and densitometry. Levels of α1 mRNA were significantly decreased in cerebral cortex but not in cerebellum or hippocampus of chronic diazepam-treated rats. Acute diazepam treatment did not change levels of α1 mRNA in any of the brain regions. Levels of β1 mRNA were examined by Northern blot analysis and also by solution hybridization analysis using a32P-labeled riboprobe. Both methods showed that β1 mRNA was not significantly changed by chronic diazepam treatment. These results demonstrate a specific change in α1 subunit that is associated with a state of altered GABA sensitivity and provide further support for the regional heterogeneity of chronic diazepam effects.

Keywords

Diazepam Northern Blot Analysis GABAA Receptor cDNA Probe Diazepam Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aviv, H., Leder, P. (1972). Purification of biologically active globin message RNA by chromatography on oligothymidylic acid-cellulose. Proc. Natl. Acad. Sci. U.S.A. 69: 1408–1412PubMedCrossRefGoogle Scholar
  2. Barker, J.L., Owen, D.G. (1986). Electrophysiological pharmacology of GABA and diazepam in cultured CNS neurons. Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties. R.W. Olsen and J.C. Ventor (eds). Alan R. Liss, New York, p. 135–165Google Scholar
  3. Browne, T.R., Penry, J.K. (1973). Benzodiazepines in the treatment of epilepsy. A review. Epilepsia 14: 277–310PubMedCrossRefGoogle Scholar
  4. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., Rutter, W.J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299PubMedCrossRefGoogle Scholar
  5. Davis, L.G., Dibner, M.D., Battey, J.F. (1986). Basic Methods in Molecular Biology. Elsevier, New York, pp 129–156Google Scholar
  6. Davis, M., Gallager, D.W. (1988). Continuous slow release of low levels of diazepam produces tolerance to its depressant and anxiolytic effects on the startle reflex. Eur. J. Pharmacol. 150: 23–33PubMedCrossRefGoogle Scholar
  7. Gallager, D.W., Tallman, J.T. (1990). Relationship of GABAA receptor heterogeneity to regional differences in drug response. Neurochem. Res. 15: 113–118PubMedCrossRefGoogle Scholar
  8. Gallager, D.W., Lakoski, J., Gonsalves, S., Rauch, S. (1984). Chronic benzodiazepine treatment decreases postsynaptic GABA sensitivity. Nature (London) 308: 74–77CrossRefGoogle Scholar
  9. Gallager, D.W., Malcolm, A.B., Anderson, S.A., Gonsalves, S.F. (1985). Continuous release of diazepam: Electrophysiological, biochemical and behavioral consequences. Brain Res. 342: 26–36PubMedCrossRefGoogle Scholar
  10. Gallager, D.W., Heninger, C., Wilson, M.A. (1989). Chronic benzodiazepine agonist exposure and its consequences to GABA-benzodiazepine interactions. Allosteric Modifications of Amino Acid Receptors: Therapeutic Implications. E.A. Barnard and E. Costa (eds). Raven Press, New York, pp 91–108Google Scholar
  11. Garrett, K.M., Duman, R.S., Saito, N., Blume, A.J., Vitek, M.P., Tallman, J.T. (1988). Isolation of a cDNA clone for the alpha subunit of the human GABA-A receptor. Biochem. Biophys. Res. Commun. 156(2): 1039–1045PubMedCrossRefGoogle Scholar
  12. Garrett, K.M., Saito, N., Duman, R.S., Abel, M.S., Ashton, R.A., Fujimori, S., Beer, B., Tallman, J.F., Vitek, M.P., Blume, A.J. (1990). Differential expression of GABAA receptor subunits. Mol. Pharmacol. 37: 652–657PubMedGoogle Scholar
  13. Gonsalves, S.F., Gallager, D.W. (1987). Time course for development of anticonvulsant tolerance and GABAergic subsensitivity after chronic diazepam. Brain Res. 405: 94–99PubMedCrossRefGoogle Scholar
  14. Greenblatt, D.J., Shader, R.I. (1978). Dependence, tolerance, and addiction to benzodiazepines: Clinical and pharmacokinetic considerations. Drug Metab. 8: 13–28CrossRefGoogle Scholar
  15. Haefely, W., Polc, P. (1986). Physiology of GABA enhancement by benzodiazepines and barbiturates. Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties, R.W. Olsen and J.D. Venter (eds). Alan R. Liss, New York, pp 97–133Google Scholar
  16. Haefely, W., Polc, P., Pieri, L., Schaffner, R., Laurent, J.-P. (1983). Neuropharmacology of benzodiazepines: Synaptic mechanisms and neural basis of action. The Benzodiazepines: From Molecular Biology to Clinical Practice. E. Costa (ed). Raven Press, New York, pp 21–66Google Scholar
  17. Heninger, C., Gallager, D.W. (1988). Altered γ-aminobutyric acid/benzodiazepine interaction after chronic diazepam exposure. Neuropharmacology 27(10): 1073–1076PubMedCrossRefGoogle Scholar
  18. Khrestchatisky, M., MacLennan, J., Chiang, M., Xu, W., Jackson, M.B., Brecha, N., Sternini, C., Olsen, R.W., Tobin, A. (1989). A novel α subunit in rat brain GABAA receptors. Neuron 3: 745–753PubMedCrossRefGoogle Scholar
  19. Levitan, E.S., Schofield, P.R., Burt, D.R., Rhee, L.M., Wisden, W., Kohler, M., Fujita, N., Rodriguez, H.F., Barnard, E.A., Seeburg, P.H. (1988). Structural and functional basis for GABAA receptor heterogeneity. Nature 335: 76–79PubMedCrossRefGoogle Scholar
  20. Lolait, S.J., O’Carroll, A.M., Kusano, K., Muller, J.M., Brownstein, M.J., Mahan, L.C. (1989). Cloning and expression of a novel rat GABAA receptor. FEBS Lett. 246: 145–148PubMedCrossRefGoogle Scholar
  21. Marley, R.J., Gallager, D.W. (1989). Chronic diazepam treatment produces regionally specific changes in GABA-stimulated chloride influx. Eur. J. Pharmacol. 159: 217–223PubMedCrossRefGoogle Scholar
  22. Olsen, R.W., Tobin, A.J. (1990). Molecular biology of GABAA receptors. FASEB J. 4: 1469–1480PubMedGoogle Scholar
  23. Pritchett, D.B., Sontheimer, H., Shivers, B.D., Ymer, S., Kettenmann, H., Schofield, P.R., Seeburg, P.H. (1989). Importance of a novel subunit for benzodiazepine pharmacology. Nature 338: 582–585PubMedCrossRefGoogle Scholar
  24. Rickels, K., Case, W., Downing, R., Winnkur, A. (1983). Long-term diazepam therapy and clinical outcome. J. Am. Med. Assoc. 250: 767–771CrossRefGoogle Scholar
  25. Rosenberg, H.C., Chiu, T.H. (1985). Time course for development of benzodiazepine tolerance and physical dependence. Neurosci. Biobehav. Rev. 9: 123–131PubMedCrossRefGoogle Scholar
  26. Schiller, G.D., Farb, D.H. (1986). Enhancement of benzodiazepine binding by GABA is reduced rapidly during chronic exposure to flurazepam. Ann. N.Y. Acad. Sci. 463: 221–223CrossRefGoogle Scholar
  27. Schofield, P.R., Darlison, M.G., Fujita, N., Burt, D.R., Stephenson, F.A., Rodriguez, H., Rhee, L.M., Ramachandran, J., Reale, V., Glencorse, T.A., Seeburg, P.H., Barnard, E.A. (1987). Sequence and functional expression of the GABAA receptor shows a ligandgated receptor super-family. Nature 328: 221–227PubMedCrossRefGoogle Scholar
  28. Sher, P.K., Study, R.E., Mazzetta, J., Barker, J.L., Nelson, P.G. (1983). Depression of benzodiazepine binding and diazepam potentiation of GABA-mediated inhibition after chronic exposure of spinal cord cultures to diazepam. Brain Res. 268: 171–176PubMedCrossRefGoogle Scholar
  29. Tallman, J.T., Gallager, D.W. (1985). The GABAergic system: A locus of benzodiazepine action. Annu. Rev. Neurosci. 8: 21–44PubMedCrossRefGoogle Scholar
  30. Wilson, M.A., Gallager, D.W. (1988). GABAergic subsensitivity of dorsal raphe neurons in vitro after chronic benzodiazepine treatment in vivo. Brain Res. 473: 198–202PubMedCrossRefGoogle Scholar
  31. Wilson, M.A., Gallager, D.W. (1989). Responses of substantia nigra pars reticulata neurons to benzodiazepine ligands following acute and prolonged diazepam exposure: I. Modulation of GABA sensitivity. J. Pharmacol. Exp. Ther. 248: 879–885PubMedGoogle Scholar
  32. Wisden, W., Morris, B.J., Darlison, M.G., Hunt, S.P., Barnard, E.A. (1988). Distinct GABAA receptor α subunit mRNAs show differential patterns of expression in bovine brain. Neuron 1(10): 937–947PubMedCrossRefGoogle Scholar
  33. Ymer, S., Schofield, P.R., Draguuhn, A., Werner, P., Kohler, M., Seeburg, P.H. (1989). GABAA Receptor β subunit heterogeneity: Functional expression of cloned cDNAs. EMBO J. 8(6): 1665–1670PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1990

Authors and Affiliations

  • C. Heninger
    • 1
  • N. Saito
    • 1
  • J. F. Tallman
    • 1
  • K. M. Garrett
    • 2
  • M. P. Vitek
    • 2
  • R. S. Duman
    • 1
  • D. W. Gallager
    • 1
  1. 1.Department of PsychiatryYale University School of Medicine, Abraham Ribicoff Research Facilities and Connecticut Mental Health CenterNew HavenUSA
  2. 2.Lederle LaboratoriesPearl RiverUSA

Personalised recommendations