Folia Microbiologica

, Volume 20, Issue 3, pp 264–271 | Cite as

Novel approaches to the mode of action of colicins

  • J. Šmarda


According to the theory of Fredericq (1949) and Nomura (1964), colicins are attached by specific receptor sites in the cell walls of sensitive bacteria, which mediate their inhibitive effects. During last years, a great variety of experimental data have been accumulated, some of which cannot be easily interpreted in terms of this theory. There exist considerable discrepancies concerning the chemical nature and molecular weight of isolated receptors. The attachment of a colicin onto its receptor need not be irreversible. The inhibition of numerous membrane-associated functions in colicin-tolerant mutants suggests their pleiotropic deletion nature. The difference between colicin resistance and colicin tolerance does not seem to be clear-cut. Cells of stable L-forms of protoplast type, completely devoid of their walls, retain in most cases the same patterns of sensitivity to colioins as rods of the same strains. Experimental changes in the relationship between the cell wall and the cytoplasmic membrane decrease colicin sensitivity of the cells. Colicin E3 has been found to be a specific endoribonuclease, able to cleave a terminal fragment from the 16 S rRNA also in isolated ribosomesin vitro: not only in ribosomes from sensitivive bacteria, but also in those from resistant ones and from eukaryotic cells. A destabilization of the DNA helix was induced by colicin E2in vitro asin vivo. It seems that there exist two distinct types of colicin receptors with different functions: those in the cell wall, and those in the cytoplasmic membrane. Only the contact of colicins with the latter ones is biologically effective and starts both stages of their inhibitive effect: the reversible and the irreversible ones.


Adsorption Capacity Cytoplasmic Membrane Common Receptor Tolerant Mutant Sensitive Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almendinger R., Hager L. P.: Role for endonuclease I in the transmission process of oolicin E2.Nature New Biol. 235, 199 (1972).PubMedGoogle Scholar
  2. Beppu T., Arima K.: Dissociating activity of purified colicin E2 on the isolated membrane complex ofEscherichia coli.Biochim. Biophys. Acta 219, 512 (1970).PubMedCrossRefGoogle Scholar
  3. Beppu T., Arima K.: Dissociating activity of purified colicin E2 on the isolated DNA-membrane ofEscherichia coli.Biochim. Biophys. Acta 262, 453 (1972).PubMedGoogle Scholar
  4. Beppu T., Kawabata K., Arima K.: Specific inhibition of cell division by colicin E2 without degradation of deoxyribonucleic acid in a new colicin sensitivity mutant ofEscherichia coli.J. Bacteriol. 110, 485 (1972).PubMedGoogle Scholar
  5. Bhattacharyya P., Wendt L., Whitney E., Silver S.: Colicin-tolerant mutants ofEscherichia coli: resistance of membranes to colicin El.Science 168, 998 (1970).PubMedCrossRefGoogle Scholar
  6. Boon T.: Inactivation of ribosomesin vitro by colicin E3.Proc. Natl. Acad. Sci. U.S.A. 68, 2421 (1971).PubMedCrossRefGoogle Scholar
  7. Bowman C. M., Sidikaro J., Nomura M.: Specific inactivation of ribosomes by colicine E3in vitro and mechanism of immunity in colicinogenic cells.Nature New Biol. 234, 48 (1971).CrossRefGoogle Scholar
  8. Braun V., Schaller K., Wolff H.: A common receptor protein for phage T5 and colicin M in the outer membraneof Escherichia coli B.Biochim. Biophys. Acta 323, 87 (1973).PubMedCrossRefGoogle Scholar
  9. Buxton R. S., Holland I. B.: Colicin E2-induced DNA solubilization in mutants ofEscherichia coli deficient in endonuclease I.FEBS Lett. 39, 1 (1974).PubMedCrossRefGoogle Scholar
  10. Chang Y. Y., Hager L. P.: Inhibition of colicin E2 activity by bacterial lipopolysaccharide.J. Bacteriol. 104, 1106 (1970).PubMedGoogle Scholar
  11. Cramer W. A., Keenan T. W.: Phospholipase A activity is not associated with early effects of colicin El.Biochim. Biophys. Res. Commun. 56, 60 (1974).CrossRefGoogle Scholar
  12. Cramer W. A., Phillips S. K., Keenan T. W.: On the role of membrane phase in the transmission mechanism of colicin El.Biochemistry 12, 1177 (1973).PubMedCrossRefGoogle Scholar
  13. DeGraafF. K., VanVughtM. J. J., Stouthamer A. H.: Cell-envelope changes in mutants ofCitrobacter freundii with altered response to colicin A. Ant. v. LeeuwenhoekJ. Microbiol. Serol. 39, 51 (1973).Google Scholar
  14. DiMasiD. R., White J. C., Schnaitman C. A., Bradbeer C.: Transport of vitamin B12 inEscherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope.J. Bacteriol. 115, 506 (1973).Google Scholar
  15. Fredericq P.: Sur la résistance croisée entre colicine E et bactériophage II.C. R. Soc. Biol. 143, 1011 (1949).Google Scholar
  16. Guterman S. K.: Colicin B: mode of action and inhibition by enterochelin.J. Bacteriol. 114, 1217 (1973).PubMedGoogle Scholar
  17. Guterman S. K., Luria S. E.:Escherichia coli: strains that excrete an inhibitor of colicin B.Science 164, 1414 (1969).PubMedCrossRefGoogle Scholar
  18. Hamon Y., Péron Y.: Sur les propriétés détergentes des molécules de bactériocines.C. R. Acad. Sci. D277, 1401 (1973).Google Scholar
  19. Hill C., Holland I. B.: Genetic basis of colicin E susceptibility inEscherichia coli. I. Isolation and properties of refractory mutants and the preliminary mapping of their mutations.J. Bacteriol. 94, 677 (1967).PubMedGoogle Scholar
  20. Holland É. M., Holland I. B.: Induction of DNA breakdown and inhibition of cell division by colicin E2. Nature of some early steps in the process and properties of the E2-specific nuclease system.J. Gen. Microbiol. 64, 223 (1970).PubMedGoogle Scholar
  21. Holland I. B., Samson A. C. R., Holland É. M., Senior B. W.: Aspects of membrane structure and function inEscherichia coli. CIBA Found. Symp. Growth Control in Cell Cultures p. 221, 1971.Google Scholar
  22. Jetten A. M., Vogels G. D.: Inhibition of amino acid transport in membrane vesicles by colicin A and staphylococcin 1580. Ant. v. LeeuwenhoekJ. Microbiol. Serol. 39, 360 (1973).Google Scholar
  23. Koniski J., Liu C. T.: Solubilization and partial characterization of the colicin I receptor ofEscherichia coli.J. Biol. Chem. 249, 835 (1974).Google Scholar
  24. Marotel-Schirman J., Barbu E.: Interactions entre colicines et divers constituants de la surface bactérienne.C. R. Acad. Sci. D276, 1779 (1973).Google Scholar
  25. Meyhack B., Meyhack I., Apirion D.: Colicin E3: a unique endoribonuclease.Proc. Natl. Acad. Sci. U.S.A. 70, 156 (1973).PubMedCrossRefGoogle Scholar
  26. Nagel de Zwaig R., Luria S. E.: Genetics and physiology of colicin-tolerant mutants ofEscherichia coli.J. Bacteriol. 94, 1112 (1967).PubMedGoogle Scholar
  27. Nomura M.: Mechanism of action of colicines.Proc. Nat. Acad. Sci. U.S.A. 52, 1514 (1964).CrossRefGoogle Scholar
  28. Ohsumi Y., Maeda A.: Inactivation of ribosomes by a factor induced by colicin E3.J. Biochem. 71, 911 (1972).Google Scholar
  29. Plate C. A., Luria S. E.: Stages in colicin K action, as revealed by the action of trypsin.Proc. Natl. Acad. Sci. U.S.A. 69, 2030 (1972).PubMedCrossRefGoogle Scholar
  30. Reeves P.: Mutants resistant to colicin CA 42-E2: cross resistance and genetic mapping of a special class of mutants.Austral. J. Exp. Biol. Med. Sci. 44, 301 (1966).CrossRefGoogle Scholar
  31. Reynolds B. L., Reeves P. R.: Kinetics of adsorption of colicin CA 42-E2 and reversal of its bactericidal activity.J. Bacteriol. 100, 301 (1969).PubMedGoogle Scholar
  32. Ringrose P. S.: Interaction between colicin E2 and DNAin vitro.FEBS Lett. 23, 241 (1972).PubMedCrossRefGoogle Scholar
  33. Ringrose P. S.: Effects of colicin E2 on DNA and the bacterial membranein vivo.Biochim. Biophys. Acta 312, 656 (1973).PubMedGoogle Scholar
  34. Sabet S. F., Schnaitman C. A.: Purification and properties of the colicin E3 receptor ofEscherichia coli.J. Biol. Chem. 248, 1797 (1973).PubMedGoogle Scholar
  35. Shannon R., Hedges A. J.: Reversibility of the specific adsorption of colicin E2-P9 to cells of eolicinsensitive strainsof Escherichia coli.J. Bacteriol. 116, 1136 (1973).PubMedGoogle Scholar
  36. Sidikaro J., Nomura M.: Colicin E3-inducedin vitro inactivation of ribosomes from colicin-insensitive bacterial species.FEBS Lett. 29, 15 (1973).PubMedCrossRefGoogle Scholar
  37. Šmabda J., Ebringer L., Mach J.: The effect of colicin E2 on the flagellateEuglena gracilis.J. Gen. Microbiol. 86, 363 (1975).Google Scholar
  38. Šmarda J., Kousalík J., Pavlák I.: Adsorption and effect of colicins on sensitive bacteriaEscherichia coli with altered cell surface.Folia Microbiol. 20, 64 (1975).Google Scholar
  39. Šmarda J., Laněk B.: Possibility of use of colicin-refractory mutants in the study of localization of colicin receptors.Folia Microbiol. 16, 481 (1971).CrossRefGoogle Scholar
  40. Šmarda J., Schuhmann E.: An ambiguous effect of colicin E3 on wall-less stable L-form cellsof Escherichia coli.Z. Allg. Mikrobiol. 14, 241 (1974).PubMedCrossRefGoogle Scholar
  41. Smarda J., Taubeneck U.: Situation of colicin receptors in surface layers of bacterial cells.J. Gen. Microbiol. 52, 161 (1968).Google Scholar
  42. Takagaki Y., Kunugita K., Matsuhashi M.: Evidence for the direct action of colicin K on aerobic32P1 uptake inEscherichia coli in vivo andin vitro.J. Bacteriol. 113, 42 (1973).PubMedGoogle Scholar
  43. Tubnowsky F., Högknauek G.: Colicin E3, an inactivating agent of the ribosomal A-site.Biochem. Biophys. Res. Commun. 55, 1246 (1973).CrossRefGoogle Scholar
  44. Weltzien H. U., Jesaitis M. A.: The nature of the colicin K receptor ofEscherichia coli Cullen.J. Exp. Med. 133, 534 (1971).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1975

Authors and Affiliations

  • J. Šmarda
    • 1
  1. 1.Department of Biology, Medical FacultyJ. E. Purkyně UniversityBrno

Personalised recommendations