Folia Microbiologica

, Volume 20, Issue 2, pp 103–111 | Cite as

Analysis of the intracellular DNA-protein associations inEscherichia coli andBacillus subtilis

  • J. Hochmannová


Intracellular DNA-protein complexes free of RNA have been isolated fromEscherichia coli B andBacillus subtilis 168. The complexes were characterized by the protein/DNA ratio (approximately 0.4) and by physico-chemical parameters. Using electrophoretic methods, it was shown that the protein component of the studied complexes from both microorganisms contained acid and basic proteins. The composition of the protein component of complex isolated fromBacillus subtilis was studied with respect to the growth rate of the culture. It was found that the sample from a slowly growing culture contained always higher amounts of basic proteins with a lower electrophoretic mobility than that from a culture growing more rapidly. A possible role of these proteins is discussed.


Human Serum Albumin Bacillus Subtilis Basic Protein Amino Acid Mixture Disc Electrophoresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts B., Frey L.: Baoteriophage gene 32: a structural protein in the replication and recombination of DNA.Nature227, 1313 (1970).PubMedCrossRefGoogle Scholar
  2. Allfrey V. G., Mirsky A. E.: Evidence for the complete DNA dependence of RNA synthesis in isolated thymus nuclei.Proc. Nat. Acad. Sci.48, 1590 (1962).PubMedCrossRefGoogle Scholar
  3. Anagnostopoulos C., Spizizen J.: Requirements for transformation inBacillus subtilis.J. Bacteriol.81, 741 (1961).PubMedGoogle Scholar
  4. Bhagavan N. V., Atchley W. A.: Properties of a deoxyribonucleoprotein complex derived fromBacillus subtilis.Biochemistry4, 234 (1965).CrossRefGoogle Scholar
  5. Burton K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid.Biochem. J.62, 315 (1956).PubMedGoogle Scholar
  6. Butler J. A. V., Godson G. N.: Biosynthesis of nucleic acids inBacillus megatherium. I. The isolation of a nuclear material.Biochem. J.88, 176 (1963).PubMedGoogle Scholar
  7. Crothers D. M., Zimm B. H.: Viscosity and sedimentation of the DNA from bacteriophages T2 a T7 and the relation to molecular weight.J. Mol. Biol.12, 525 (1965).PubMedGoogle Scholar
  8. Dische Z.:The Nucleic Acids, Vol. I, p. 285. Chargaff E., Davidson J. N. (Eds.), Academic Press, New York (1955).Google Scholar
  9. Doskočil J.: The sequence specificity of methylation of cytosine in bacterial deoxyribonucleic acids.Collection Czech. Chem. Commun.31, 2456 (1966).Google Scholar
  10. Farmer J. L., Rothman J.: Transformable thymine-requiring mutant ofBacillus subtilis.J. Bacteriol.89, 262 (1965).PubMedGoogle Scholar
  11. Ganesan A. T., Lederberg F.: A cell-membrane bound fraction of bacterial DNA.Biochem. Biophys. Res. Commun.18, 824 (1965).CrossRefGoogle Scholar
  12. Gesteland R. F., Staehelin T.: Electrophoretic analysis of proteins from normal and cesium chloridetreatedEscherichia coli ribosomes.J. Mol. Biol.24, 149 (1967).PubMedCrossRefGoogle Scholar
  13. Hochmannová J., Šrogl M.: Association of cellular proteins with DNA depending on the growth rate of the bacterial culture.Abstr. Commun. Meet. Fed. Eur. Biochem. Soc.8, 1056 (1972).Google Scholar
  14. Huang R. C., Bonner J., Murray K.: Physical and biological properties of soluble nucleohistones.J. Mol. Biol.8, 54 (1964).PubMedCrossRefGoogle Scholar
  15. Huang B. C., Bonner J.: Histone-bound RNA, a component of native nucleohistone.Proc.Natl. Acad. Sci.54, 960 (1965).PubMedCrossRefGoogle Scholar
  16. Hurst A., Taylor D. R.: Growth inhibition ofEscherichia coli by some basic proteins prepared from the same strain.Nature207, 438 (1965).PubMedCrossRefGoogle Scholar
  17. Koslov Yu V., Geobgiev G. P.: Mechanism of inhibitory action of histones on DNA template activityin vitro.Nature228, 245 (1970).PubMedCrossRefGoogle Scholar
  18. Leaver J. L., Cruft H. J.: Investigation into the distribution and properties of histones and other basic proteins in bacteria.Biochem. J.101, 665 (1966).PubMedGoogle Scholar
  19. Liquori A. M., Constantino L., Crescenzi V., Elia V., Giglio E., Puliti R., De Santis Savino M., Vitagliano V.: Complexes between DNA and polyamines: A molecular model.J. Mol. Biol.24, 113 (1967).CrossRefGoogle Scholar
  20. Lowry O. H., Rosebrough N. J., Fare A. L., Randall R. J.: Protein measurement with Folin phenol reagent.J. Biol. Chem.193, 265 (1951).PubMedGoogle Scholar
  21. Maaløe O., Kjeldgaard N. O.: Control of Macromolecular Synthesis. Benjamin, New York and Amsterodam (1966).Google Scholar
  22. Marmur J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms.J. Mol. Biol.3, 208 (1961).CrossRefGoogle Scholar
  23. Olins D. E., Olins A. L., von Hippel P. H.: On the structure and stability of DNA-protamine and DNA-polypeptide complexes.J. Mol. Biol.33, 265 (1968).PubMedCrossRefGoogle Scholar
  24. Olins D. E.: Interaction of lysine-rich histones and DNA.J. Mol. Biol.43, 439 (1969).PubMedCrossRefGoogle Scholar
  25. Pirkko P.: Inhibition of growth of subtilis phage SP-50 by histones.Nature215, 439 (1967).CrossRefGoogle Scholar
  26. Shelton K. R., Allfrey V. G.: Selective synthesis of a nuclear acidic protein in liver cells stimulated by Cortisol.Nature228, 132 (1970).PubMedCrossRefGoogle Scholar
  27. Sigal N., Delius H., Kornberg T., Gefter M. L., Alberts B.: A DNA-unwinding protein isolated fromEscherichia coli:Its interaction with DNA and with DNA polymerases.Proc.Natl. Acad. Sci. USA69, 3537 (1972).PubMedCrossRefGoogle Scholar
  28. Smithies O.: Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults.Biochem. J.61, 629 (1955).PubMedGoogle Scholar
  29. Šrogl M., Málek I.: Genetic properties of a membrane-bound fraction of DNA in the culture ofBacillus subtilis with synchronously replicating chromosomes.Folia Microbiol.15, 73 (1970).Google Scholar
  30. Teng C. S., Hamilton T. H.: Regulation by estrogen of organ-specific synthesis of a nuclear acidic protein.Biochem. Biophys. Res. Commun.40, 1231 (1970).PubMedCrossRefGoogle Scholar
  31. Zubay G., Watson M. R.: The absence of histone in the bacteriumEscherichia coli. I. Preparation and analysis of nucleoprotein extract.J. Biophya. Biochem. Gytol.5, 51 (1959).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1975

Authors and Affiliations

  • J. Hochmannová
    • 1
  1. 1.Department of Bacterial Genetics, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations