Folia Microbiologica

, Volume 25, Issue 4, pp 311–317 | Cite as

Extrusion of metabolites from baker’s yeast during glucose-induced acidification

  • K. Sigler
  • A. Knotková
  • J. Páca
  • M. Wurst


Extrusion of metabolites (glycerol, lactic, malic, and succinic acid) during the medium acidification caused by resting baker’s yeast supplied with 200mm glucose was studied under aerobic and anaerobic conditions and in the absence and presence of 14mm KCl. The maximum levels of glycerol and of the sum of acids (about 13 and 8mm, respectively) were attained anaerobically; aerobiosis reduced the levels by 40–50 % and the presence of K+ ions by another 10–20 %. The time courses of glucose consumption and medium acidification were similar aerobically and anaerobically. The glucose consumption ourves exhibited a short plateau about 2 min after glucose addition, caused probably by a rapid osmotic equilibration of glucose across the cell mambrane. Metabolite extrusion indicates that at high glucose concentrations the alcohol dehydrogenase reaction is supplemented by other reactions aiding in the maintenance of a balanced NAD+/NADH ratio in the cells.


Succinic Acid Glucose Consumption High Glucose Concentration Dissolve Oxygen Tension Initial Glucose Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiking H., Sterkenburg A., Tempest D.W.: Influence of specific growth limitation and dilution rate on the phosphorylation efficiency and cytochrome content of mitochondria ofCandida utilis NCY 321.Arch.Microbiol. 113, 65 (1977).PubMedCrossRefGoogle Scholar
  2. Beown C.M., Johnson B.: Influence of the concentration of glucose and galactose on the physiology ofSaccharomyces cerevisiae in continuous culture.J.Gen.Microbiol. 64, 279 (1970).Google Scholar
  3. Conway E.J., O’Malley E.: The nature of the cation exchanges during yeast fermentation, with formation of 0.02n H ions.Biochem.J. 40, 59 (1946).PubMedGoogle Scholar
  4. Conway E.J., Brady T.G.: Biological production of acid and alkali. I. Quantitative relation of succinic and carbonic acids to the K and H ion exchange in fermenting yeast.Biochem.J. 47, 360 (1950).PubMedGoogle Scholar
  5. Dahlquist A.: Method for assay of intestinal disaccharidases.Anal.Biochem. 7, 18 (1964).CrossRefGoogle Scholar
  6. Gancedo C., Gancedo J.M., Sols A.: Glycerol metabolism in yeasts. Pathways of utilization and production.Eur.J.Biochem. 5, 166 (1968).CrossRefGoogle Scholar
  7. Harrison D.E.F.: Physiological effects of dissolved oxygen tension and redox potential on growing population of microorganisms.J.Appl.Chem.Biotechnol. 22, 417 (1972).CrossRefGoogle Scholar
  8. Holzer H., Bernhardt W., Schneider S.: Zur Glycerinbildung in Bäckerhefe.Biochem.Z. 336, 495 (1963).PubMedGoogle Scholar
  9. Holzer H., Holzer E., Schultz G.: Zusammenhang zwischen Wachstum und aerober Gärung. I. Versuche mit Hefezellen.Biochem.Z. 326, 386 (1965).Google Scholar
  10. Kunkee R.E., Amerine M.A.: Yeast in wine-making, p. 5 inThe Yeasts (A. H, Rose, J.S. Harrison, Eds.). Vol. 3. Academic Press, London-New York 1970.Google Scholar
  11. Ohnishi T., Sottocasa G., Ernster L.: Current approach to the mechanism of energy-coupling in the respiratory chain: Studies with yeast mitochondria.Bull.Soc.Chim.Biol. (Paris) 48, 1189 (1966).Google Scholar
  12. Peňa A.: Studies on the mechanism of K+ transport in yeast.Arch.Biochem.Biophys. 167, 397 (1975).PubMedCrossRefGoogle Scholar
  13. Peynaud E., Lafon-Lafourcade S., Guimberteau G.: Sur les diverses formes de l’acide lactique dans les milieux fermentés.Compt.rend. 263, 634 (1966).Google Scholar
  14. Polakis E.S., Bartley W., Meek G.A.: Changes in the activities of respiratory enzymes during the aerobie growth of yeast on different carbon sources.Biochem.J. 97, 298 (1965).PubMedGoogle Scholar
  15. Radler F., Fuck E.: Die Umsetzung von L-Apfelsäure durchSaccharomyces cerevisiae bei der Gärung.Experientia 26, 731 (1970).PubMedCrossRefGoogle Scholar
  16. Radler E.: The formation of nonvolatile acids by strains ofSaccharomyces during fermentation, p. 519 inYeasts. Models in Science and Technics (A. Kocková-Kratochvílová, E. Minárik, Eds). Publ. House Slovak Acad. Sci., Bratislava 1972.Google Scholar
  17. Riemersma J.C.: Hydrogen ion transport during anaerobic fermentation by baker’s yeast. Thesis, Leiden 1964.Google Scholar
  18. Rickard P.A.D., Hogan C.B.J.: Effect of glucose on the activity and synthesis of fermentative and respiratory enzymes ofSaccharomyces sp.Biotechnol.Bioeng. 20, 1105 (1978).PubMedCrossRefGoogle Scholar
  19. Rink H.: Regulatory function of H+—K+ exchange in yeast cells.Proc.IVth Internat.Symp.Yeasts, Part I, Abstr. A 33; Vienna 1975.Google Scholar
  20. Sigler K., Knotková A., Kotyk A.: Effect of inhibitors on acid production by baker’s yeast.Folia Microbiol. 23, 410 (1978).Google Scholar
  21. Slonimski P.P.: Adaptation respiratoire: dévelopment de la systéme hemoproteique induit par l’oxygene.Internat. Congr. Biochemistry 3, 242 (1956).Google Scholar
  22. Sols A., Gancedo C, DelaFuente G.: Energy-yielding metabolism in yeasts, p. 271 inThe Yeasts (A.H. Rose, J.S. Harrison, Eds.). Vol. 2. Academic Press, London-New York 1971.Google Scholar
  23. Watson T.G.: Effects of sodium chloride on steady-state growth and metabolism ofSaccharomyces cerevisiae.J.Gen.Microbiol. 64, 91 (1970).PubMedGoogle Scholar
  24. Wurst M., Sigler K., Knotková A.: Gas chromatographic determination of extracellular metabolites produced by baker’s yeast during glucose-induced acidification.Folia Microbiol. 25, 000 (1980).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1980

Authors and Affiliations

  • K. Sigler
    • 1
  • A. Knotková
    • 1
  • J. Páca
    • 3
  • M. Wurst
    • 2
  1. 1.Department of Cell PhysiologyCzechoslovak Academy of SciencesPrague 4
  2. 2.Department of Experimental Mycology, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4
  3. 3.Department of Fermentation Chemistry and TechnologyInstitute of Chemical TechnologyPrague 6

Personalised recommendations