Folia Microbiologica

, Volume 23, Issue 1, pp 45–54 | Cite as

Antimutagenic effects of caffeine during nitrosoguanidine-induced mutagenesis ofSalmonella typhimurium cells and phages

  • P. Háva
  • A. Hejlová
  • L. Sošková


The effect of caffeine on nitrosoguanidine-induced mutagenesis ofSalmonella typhimurium & nd its P22 and L phages was studied. The detected mutations included phage “clear” mutations, reversions of phage “amber” mutation, and prototrophic reversions of thehis auxotroph ofSalmonella typhimurium. Neither therecA mutation of the host nor theerf mutation of the phage genome were found to affect the nitrosoguanidine-induced mutagenesis of the phage during vegetative growth. Beginning with a concentration of 0.2 mg/ml, caffeine decreased the frequency of mutants by 30–60%, attaining a maximum effect at 1.5 mg/ml and retaining this effect even at higher concentrations. A similar antimutagenic effeot was observed with the mutagenesis of the host cells. The nitrosoguanidine-induced mutagenesis does not seem to be related to the function of therecA cell gene or theerf phage gene. The mechanism of mutagenesis by nitrosoguanidine probably has two components, one of them caffeine sensitive, the other caffeine-resistant.


Caffeine Nitroso Caffeine Concentration Nitrosoguanidine Antimutagenic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bezděk M., Amati P.: Properties of P22 and relatedSalmonella typhrimurium phage I. General features and host specificity.Virology 3, 272 (1967).Google Scholar
  2. Botstein D.: Synthesis and maturation of phage P22 DNA I. Identification of intermediates.J. Mol. Biol. 34, 621 (1968).PubMedCrossRefGoogle Scholar
  3. Botstein D., Matz M. J.: A recombination function essential to the growth of bacteriophage P22.J. Mol. Biol. 54, 417 (1970).PubMedCrossRefGoogle Scholar
  4. Boyce R. P., Howard-Flanders P.: Release of ultraviolet light-induced thymine dimers from DNA inE. coli K-12.Proc. Natl. Acad. Sci. U.S.A. 51, 293 (1964).PubMedCrossRefGoogle Scholar
  5. Bridges B. A., Dennis R. E., Munson R. J.: Differential induction and repair of ultraviolet damage leading to true reversions and external suppressor mutations of an ochre codon inEscherichia coli B/r WP2.Genetics 57, 897 (1967).PubMedGoogle Scholar
  6. Bridges B. A., Mottershead R. P., Green M. H. L., Gray W. J. H.: Mutagenicity of dichlorvos and methvl-methane-sulphonate forEscherichia coli WP2 and some derivatives.Mutation Res. 19, 295 (1973).PubMedGoogle Scholar
  7. Clarke C. H., Shankel D. M.: Antimutagenesis in microbial systems.Bacteriol. Bev. 39, 33 (1975).Google Scholar
  8. Clarke C. H., Wade M. J.: Evidence that caffeine, 8-methoxypsoralen and steroidal diamines are frameshift mutagens forE. coli K12.Mutation Bes. 28, 123 (1975).CrossRefGoogle Scholar
  9. Defais M., Facquet P., Radman M., Errera M.: Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems.Virology 43, 495 (1971).PubMedCrossRefGoogle Scholar
  10. Eisenstark A.: Bacteriophage techniques. In:Methods in Virology I, 450–518, Ed. Marmarosh a Koprowski, Academic Press (1967).Google Scholar
  11. Grigg G. W., Stuckey J.: The reversible suppression of stationary phase mutation inEscherichia coli by caffeine.Genetics 53, 823 (1966).PubMedGoogle Scholar
  12. Hince T. A., Neale S.: Effect of N-nitroso-AT-methylurea on viability and mutagenic response of repairdeficient strains ofEscherichia coli.Mutation Res. 22, 235 (1974).PubMedCrossRefGoogle Scholar
  13. Jimenez-Sanchez A.: The effect of nitrosoguanidine upon DNA synthesisin vitro.Molec. Gen. Genet. 145, 113 (1976).PubMedCrossRefGoogle Scholar
  14. Jiménez-Sánchez A., Cebda-Olmedo E.: Mutation and DNA replication inEscherichia coli treated with low concentrations of N-methyl-N′-nitro-N-nitrosoguanidine.Mutation Res. 28, 337 (1975).PubMedCrossRefGoogle Scholar
  15. Kihxman B. A.: Effects of caffeine on the genetic material.Mutation Res. 26/2, 53 (1974).Google Scholar
  16. Kondo S.: Evidence that mutations are induced by errors in repair and replication.Genetics, Suppl.73, 109 (1973).PubMedGoogle Scholar
  17. Kondo S., Ischikawa H.: Evidence that pretreatment ofEscherichia coli cells with N-methyl-N-nitro-N-nitrosoguanidine enhances mutability of subsequently infecting phage lambda.Mol. Gen. Genet. 126, 319 (1973).PubMedCrossRefGoogle Scholar
  18. Lawley P. D., Thatcher C. J.: Methylation of the deoxyribonucleic acid in cultured mammalian cells by N-methyl-N′-nitro-N-nitrosoguanidine.Biochem. J. 116, 693 (1970).PubMedGoogle Scholar
  19. Lieb M.: Enhancement of ultraviolet-induced mutation in bacteria by caffeine.Z. Vererbungslehre 92, 416 (1961).CrossRefGoogle Scholar
  20. Lopbieno N., Schupbach M.: On the effect of caffeine on mutation and recombination inSchizosaccharomyces pombe.Mol. Gen. Genet. 110, 348 (1971).CrossRefGoogle Scholar
  21. Neale S.: Mutagenicity of nitrosamides and nitrosamidines in micro-organisms and plants.Mutation Res. 32, 229 (1976).PubMedGoogle Scholar
  22. Puglisi P. P.: Antimutagenic activity of actinomycin D and basic fuchsin inSaccharomyces cerevisiae.Mol. Gen. Genet. 103, 248 (1968).PubMedCrossRefGoogle Scholar
  23. Roberts J. J., Stubbock J. E., Wabd K. N.: The enhancement by caffeine of alkylation-induced cell-death, mutations and chromosomal aberrations in Chinese hamster oells, as a result of inhibition of postreplication DNA repair.Mutation Res. 26, 129 (1974).PubMedGoogle Scholar
  24. Rouland-Dussoix D.: Dégradation par la cellule hôte du DNA du bacteriophage lambda irradié par rayonnement ultraviolet.Mut. Res. 4, 241 (1967).Google Scholar
  25. Rupp W. D. Howabd-Flandebs P.: Discontinuities in the DNA synthetized in an excision-defective strainof Escherichia coli following ultraviolet irradiation.J. Mol. Biol. 31 (1968).Google Scholar
  26. Sedgwick S. G.: Inducible error-prone repair inEscherichia coli.Proc. Natl. Acad. Sci. U.S.A. 72/7, 2753 (1975).PubMedCrossRefGoogle Scholar
  27. Setlow R. B., Cabbieb W. L.: The disappearance of thymine dimers from DNA: an error correcting mechanism.Proc. Natl. Acad. Sci. U.S.A. 51, 226 (1964).PubMedCrossRefGoogle Scholar
  28. Shimada K., Takagi Y.: The effect of caffeine on the repair of ultraviolet-damaged DNA in bacteria.Biochim. Biophys. Acta 145, 763 (1967).PubMedGoogle Scholar
  29. Trosko J. E., Fbank P., Chu E. H. Y., Becker J. E.: Caffeine inhibition of postreplication repair of N-acetoxy-2-acetylaminofluorene-damaged DNA in Chinese hamster cells.Cancer Res. 33, 2444 (1973).PubMedGoogle Scholar
  30. Vogel H. J., Bonnes D. M.: Acetyl ornithinase ofEscherichia coli: Partial purification and some properties.J. Biol. Chem. 218, 97 (1956).PubMedGoogle Scholar
  31. Whitfield H. J., Mabtin R. G., Ames B. N.: Classification of aminotransferase (C gene) mutations in the histidine operon.J. Mol. Biol. 21, 335 (1966).PubMedCrossRefGoogle Scholar
  32. Wing J. P., Levine M., Smith H. O.: Recombination-deficient mutant ofSalmonella typhimurium.J. Bacteriol. 95, 1828 (1968).PubMedGoogle Scholar
  33. Witkin E. M.: Mutation-proof and mutation-prone modes of survival in derivatives ofEscherichia coli B differing in sensitivity to ultraviolet light.Brookhaven Symp. Biol. 20, 17 (1967).Google Scholar
  34. Witkin E. M.: Ultraviolet-induced mutation and DNA repair.Ann. Rev. Genetics 3, 525 (1969).CrossRefGoogle Scholar
  35. Witkin E. M., Farquarson E. L.: Enhancement and diminution of ultraviolet-light initiated mutagenesis by posttreatment with caffeine inEscherichia coli. In:Wolstenholme andM. O’Connor (eds.):Mutation as a Cellular Process, p. 36–49, Ciba Foundation Symposium, J. and A. Churchill, Ltd. London (1996).Google Scholar
  36. Wulff D. L., Rupert C. S.: Disappearance of thymine photodimer in ultraviolet irradiated DNA upon treatment with a photoreactivating enzyme from baker’s yeast.Biochem. Biophys. Res. Commun. 7, 237 (1962).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1978

Authors and Affiliations

  • P. Háva
    • 1
  • A. Hejlová
    • 1
  • L. Sošková
    • 1
  1. 1.Department of Biology, Faculty of MedicineJ. E. Purkyně UniversityBrno

Personalised recommendations