Biologia Plantarum

, Volume 31, Issue 5, pp 336–343 | Cite as

Changes in membrane potential inChenopodium rubrum during the course of photoperiodic flower induction

  • L. Adamec
  • J. Krekule


Electrophysiological processes were investigated in the reception organ of photoperiodism, cotyledons and first leaves, in a model short-day plantChenopodium rubrum L. (selection 374) within the dark inductive cycle for flowering. Membrane potential (Em) was measured in cotyledon and first leaf mesophyll of intact plants. The Em time-course was fairly similar during inductive dark or postinductive light period or in non-inductive continuous light and had a character of irregular oscillations. The most distinct oscillations were found during the postinductive light period. Changes in light régime at the beginning (light off) and the end of inductive dark period (light on) triggered marked transient Em changes having a character of damped oscillations. Cortical root cells in intact plants did not react to switching light and darkness. Changes in Em in reception organs during the inductive cycle could not be correlated with the formation and transport of floral stimulus or with reaching the induced state. Thus, the electrophysiological nature of floral stimulus has not been confirmed.


Radon Mesophyll Cell Intact Plant Reception Organ Flower Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamec, L.: The comparison between membrane and transorgan electric potentials inChenopodium rubmm: The methods. — Biol. Plant.31: 327–335, 1969.Google Scholar
  2. Adamec, L., Krekule, J.: Changes in transorgan electric potential inChenopodim rubrum during the course of photoperiodic flower induction. — Biol. Plant.31: 344–353, 1989.Google Scholar
  3. Bernier, G.: La nature complexe du stimulus floral et des facteurs de floraison. - In:Jacques, R. (ed.): Etudes de Biologie Végét-le. Pp. 243–264. Editeur L. Jean, Paris 1976.Google Scholar
  4. Brinckmann, E., Luttge, U.: Lichtabhängige Membranpotentialschwankungen und deren interzelluläre Weiterleitung bei panaschierten Photosynthese-Mutanten von Oenothera. — Planta119:47–57, 1974.CrossRefGoogle Scholar
  5. Chaïlakhyan, M. Kh.: Gormonal’naya Teoriya Razvitiya Rasteniï. [Hormonal Theory of Plant Development.] — Acad. Sci., Publ. House, Moscow 1937.Google Scholar
  6. Cumming, B. G.: Extreme sensitivity of germination and photoperiodic reaction in the genusChenopodium (Tourn.) L. — Nature184: 1044–1045, 1959.PubMedCrossRefGoogle Scholar
  7. Greppin, H., Auderset, G., Bonzon, M., Penel, C.: Changement d’état membranaire et mécanisme de la floraison. — Saussurea9: 83–101, 1978.Google Scholar
  8. Greppin, H., Horwrrz, B. A., Horwitz, L. P.: Light-stimulated bioelectric response of spinach leaves and photoperiodic induction. — Z. Pfianzenphysiol.68: 336–345, 1973.Google Scholar
  9. Jaffe, L. F., Nuccitelli, R.: Electrical controls of development. — Annu. Rev. Biophys. Bioeng.6: 445–476, 1977.PubMedCrossRefGoogle Scholar
  10. Lüttge, U., Pallaghy, C. K.: Light-triggered transient changes of membrane potentials in green cells in relation to photosynthetic electron transport. — Z. Pfianzenphysiol.61: 58–67, 1969.Google Scholar
  11. Monta von, M.: Lumière et biopotentiels chez l’épinard(Spinacia oleracea L. cv. Nobel): phytochrome, communication interorganique et floraison. — PhD. Thesis, No. 2099. Univ. Genève 1984.Google Scholar
  12. Penel, C., Gaspar, T., Greppin, H.: Rapid interorgan communications in higher plants with special reference to flowering. — Biol. Plant.27; 334–338, 1985.Google Scholar
  13. Pickard, B. G.: Action potentials in higher plants. — Bot. Rev.39: 172–201, 1973.CrossRefGoogle Scholar
  14. Racusen, R., Galston, A. W.: Developmental significance of light-mediated electric response in plant tissue. - In:Shropshire, W. Jr., Mohr, H. (ed.): Photomorphogenesis. Encyclopedia of Plant Physiology. New Series. Vol. 16B. Pp. 687–703. Springer-Verlag, Berlin - Heidelberg - New York 1983.Google Scholar
  15. Thornley, J. H. M., Cockshull, K. E.: A catastrophe model for the switch from vegetative to reproductive growth in the shoot apex. — Ann. Bot.46: 333–341,1980.Google Scholar
  16. Ullmann, J.:Seidlová, F., Krekule, J., Pavlova, L.:Chenopodium rubrum as a model plant for testing the flowering effects of PGRs, — Biol. Plant.27: 367–372,1985.Google Scholar
  17. Vince-Prue, D.: Photoperiodism in Plants. - McGraw-Hill, London-New York 1975.Google Scholar
  18. Wagner, E.: Molecular basis of physiological rhythms, - In:Jennings, D. H. (ed.): Integration of Activity in the Higher Plant. Pp. 33–72. Univ. Press, Cambridge 1977.Google Scholar
  19. Zeevaart, J. A. D.: Photoperiodic induction, the floral stimulus and flower-promoting substances. - In:Vince-Prue, D., Thomas, B., Cockshull, K. E. (ed.): Light and the Flowering Process. Pp. 137–142. Academic Press, London 1984.Google Scholar

Copyright information

© Academia 1989

Authors and Affiliations

  • L. Adamec
    • 1
  • J. Krekule
    • 1
  1. 1.Institute of Experimental BotanyCzechoslovak Academy of SciencesPraha 6Czechoslovakia

Personalised recommendations