Science in China Series A: Mathematics

, Volume 41, Issue 6, pp 663–672 | Cite as

Radiating metric, retarded time coordinates of Kerr-Newman-de Sitter black holes and related energy-momentum tensor

  • Dianyan Xu


The charged rotating metric in de Sitter space, derived by Mallett and used by Koberlein, is shown incorrect. Mallett’s metric and his energy-momentum tensor do not satisfy the Einstein-Maxwell field equations with a cosmological term in the nonradiating and radiating Kerr-Newman-de Sitter case. The corresponding correct metric and the radiating energy-momentum tensor are given.


radiation metric retarded lime eoordinates black holes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mallett, R. L., Metric of a Totaling radiating charged mass in a de Sitter space.Phys. Lett., 1988, A126: 226.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Brain, D., Rotating radiating black holes, inflation and cosmic censorship,Phys. Rev., 1995, 51: 6783.MathSciNetGoogle Scholar
  3. 3.
    Xu Dianyan, EXact solutions of Einstein-Maxwell equations in higher dimensional spacetime.Class, Quaniurn Grav., 1988, 5: 871.CrossRefGoogle Scholar
  4. 4.
    Carter, B., Black hole equilibrium states, inBluck Holes (Les Astres Occlus) (eds. DeWitt C., DeWitt, B. C.,), New York: Gordon Breach, 1973.Google Scholar
  5. 5.
    Carter, B., The generill theory of the mechanical, electroniagnetic and thermodynamic properties of black holes, inGeneral Relativity (eds. Hawking S. W., Israel, W.) Cambridge: Cambridge University Press, England, 1979.Google Scholar
  6. 6.
    Carter, B., A ncw family of Einstein spaces,Phys. Lett., 1968, A26: 399.CrossRefGoogle Scholar
  7. 7.
    Gibbons, G. W., Hawking, S. W., Cosmological event horizons, thermodynamics and particle creation,Phys. Rev. D, 1997. 15: 2738.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Newman, E. T., Janis, A Note on the Kerr spinning partiele metric,J. Muth. Phys., 1965, 6: 915.MATHCrossRefGoogle Scholar
  9. 9.
    Newman, E. T., Metric of a rotating chilrged mass,J. Math. Phys., 1965, 6: 918.CrossRefGoogle Scholar
  10. 10.
    Kramer, D.,Eract Solutions of Einstein’s Field Equations, London-New York: Cambridge University Press, York. 1980, Chapter 17.Google Scholar
  11. 11.
    Carmeli, M., Kaye, M., Gravitational field of a radiating rotating body,Auu. Phys., 1977, 103: 97.MATHMathSciNetGoogle Scholar
  12. 12.
    Carmeli, M.,Cluassical Fields, General Relativity and Gauge Theory, New York: John Wiley & Sons, 1982.Google Scholar
  13. 13.
    Patino, A., Rago, H., A radiating charge embedded in a de Sitter universe,Phys. Lett. A, 1987, 121: 329.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Chitndrasekhar, S., TheMathematical Theory of Black Holes, Oxford: Ciarendon Press, 1983, 205.Google Scholar
  15. 15.
    Vaidya, P. C., The gravitational field of a radiating star,Proc. Indian Acad. Sci., A, 1951, 73: 264.MathSciNetGoogle Scholar

Copyright information

© Science in China Press 1998

Authors and Affiliations

  • Dianyan Xu
    • 1
    • 2
  1. 1.Department of Computer Sciience and TechnologyPeking UniversityBeijingChina
  2. 2.Chinese Centre of Advanced Science and TechnologyWorld LaboratoryBeijingChina

Personalised recommendations