Skip to main content
Log in

Total lipid and fatty acid composition of eight strains of marine diatoms

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Fatty acid composition and total lipid content of 8 strains of marine diatoms (Nitzschia frustrula, Nitzschia closterium, Nitzschia incerta, Navicula pelliculosa, Phaeodactylum tricornutum, Synedra fragilaroides) were examined. The microalgae were grown under defined conditions and harvested at the late exponential phase. The major fatty acids in most strains were 14∶0 (1.0%–6.3%), 16∶0 (13.5–26.4%), 16∶1n−7 (21.1%–46.3%) and 20∶5n−3 (6.5%–19.5%). The polyunsaturated fatty acids 16∶2n−4, 16∶3n−4, 16∶4n−1 and 20∶4n−6 also comprised a significant proportion of the total fatty acids in some strains. The characteristic fatty acid composition of diatoms is readily distinguishable from those of other microalgal groups. Significant concentration of the polyunsaturated fatty acid 20∶5n−3 (eicosapentaenoic acid) was present in each strain, with the highest proportion in B222 (19.5%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, D. L., Grima, E. M., Sanchez, P. J. A. et al., 1992. Isolation of clones ofIsochrysis galbana rich in eicosapentaenoic acid.Aquaculture 102:363–371.

    Article  Google Scholar 

  • Bligh, E. G., 1959. A rapid method of total lipid extraction and purification.Can. J. Biochem. Physio. 37: 911–917.

    Google Scholar 

  • Dunstan, G. A., Volkman, J. K., Barrett, S. M. et al., 1994. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae).Phytochemistry 35: 155–161.

    Article  Google Scholar 

  • Grima, E. M., Medina, A. R., Gimenez, A. G. et al., 1996. Gram-scale purification of eicosapentaenoic acid (EPA, 20∶5n−3) from wetPhaeodactylum tricornutum UTEX640 biomass.J. Appl. Phycol. 8: 359–367.

    Article  Google Scholar 

  • Chen Mingyao, 1995. Living Food Culture. Agriculture Publishing Company. Beijing. p. 65–71. (in Chinese)

    Google Scholar 

  • Kayama, M., Araki, S., Sato, S., 1989. Lipids of Marine Plants.In: Ackman, R. G. (ed.), Marine Biogenic Lipids, Fats, and Oils. Volume II, CRC Press, Inc. Boca Raton, Florida, p. 4–21.

    Google Scholar 

  • Millner H. W. 1948. The fatty acids ofChlorella.J. Biochem. 176: 813–817.

    Google Scholar 

  • Orcutt, D. M., Patterson, G. W., 1975. Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media.Comp. Biochem. Physiol. 50B: 579–583.

    Google Scholar 

  • Reitan, K. I., Rainuzzo, J. R., Olsen, Y., 1994. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae.J. Phycol. 30: 972–979.

    Article  Google Scholar 

  • Renaud, S. M., Parry, D. L., Thinh, L. V. et al., 1991. Effect of light intensity on the proximate biochemical and fatty acid composition ofIsochrysis sp. andNannochloropsis oculata for use in tropical aquaculture.J. Appl. Phycol. 3: 43–53.

    Article  Google Scholar 

  • Tan, C. K., Johns, M. R., 1996. Screening of diatoms for heterotrophic eicosapentaenoic acid production.J. Appl. Phycol. 8:59–64.

    Article  Google Scholar 

  • Teshima, S., Yamasaki, S., Kanazawa, A. et al., 1983. Effects of water temperature and salinity on eicosapentaenoic acid level of marineChlorella.Bull. Jap. Soc. Sci. Fish. 49: 805.

    Google Scholar 

  • Thompson, P. A., Harrison, P. J., Whyte, J. N. C., 1990. Influence of irradiance on the fatty acid composition of phytoplankton.J. Phycol. 26: 278–288.

    Article  Google Scholar 

  • Viso, A. C., Marty, J. C., 1993. Fatty acids from 28 marine microalgae.Phytochemistry 34: 1521–1533.

    Article  Google Scholar 

  • Volkman, J. K., Jeffrey, S. W., Nichols, P. D. et al., 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture.J. Exp. Mar. Biol. Ecol. 128:219–240.

    Article  Google Scholar 

  • Yongmanitchai, W., Ward, O. P., 1989. ω−3 fatty acid. Alternative sources of production.Process Biochem. 8: 117–125.

    Google Scholar 

  • Yongmanitchai, W., Ward, O. P., 1991. Growth and omega−3 fatty acid production byPhaeodactylum tricornutum under different culture conditions.Appl. Envir. Microbiol. 57: 419–425.

    Google Scholar 

  • Zhou Hongqi, Renaud, S. M., Parry, D. L., 1996. Effect of temperature on growth, total lipid content and fatty acid composition of the microalgae,Nitzschia closterium, Nitzschia paleacea and Pavlova sp.J. Fish. China. 20: 235–240. (in Chinese)

    Google Scholar 

  • Zhukova, N. V., Aizdaicher, N. A., 1995. Fatty acid composition of 15 species of marine microalgae.Phytochemistry 39: 351–356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the Hi-Tech “863” Programs of the China Ministry of Science and Technology (863-819-02-01).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ying, L., Kang-sen, M. & Shi-chun, S. Total lipid and fatty acid composition of eight strains of marine diatoms. Chin. J. Ocean. Limnol. 18, 345–349 (2000). https://doi.org/10.1007/BF02876083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02876083

Key words

Navigation