Science in China Series A: Mathematics

, Volume 40, Issue 6, pp 598–605 | Cite as

Admissible estimation of linear functions of characteristic values of a finite population

  • Guohua Zou
  • Ping Cheng
  • Shiyong Feng


The problem on admissibility of estimators is considered based on the point of view of the superpopulation model. The necessary and sufficient conditions for linear estimators of an arbitrary linear function of characteristic values of a finite population to be admissible in the class of linear or all estimators are obtained respectively.


survey sampling superpopulation model admissibility linear estimator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Godambe, V. P., Joshi, V. M., Admissibility of Bayes estimation in sampling finite populations (I).Ann. Math. Statist., 1965, 36:1701.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bellhouse, D. R.. Joshi, V. M., On the admissibility of the regression estimator,J. R. Statist. Soc.B, 1984, 46: 268.MATHMathSciNetGoogle Scholar
  3. 3.
    Zou, G. H., Feng, S. Y. Admissibility of PPSWR sampling design in the class of sampling designs with replacement,Chinese Science Bulletin (in Chinese), 1995, 40: 683.MathSciNetGoogle Scholar
  4. 4.
    Cassel, C. M., Sarndal, C. E., Wretman, J. H., Some results on generalized difference estimation and generalized regression estimation for finite populations,Biometrika, 1976, 63:615.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cassel, C. M., Särndal, C. E., Wretman, J. H.,Foundations of Inference in Survey Sampling, New York: John Wiley, 1977.MATHGoogle Scholar
  6. 6.
    Godambe, V. P.. Estimation in survey sampling: robustness and optimality,J. Amer. Statist. A.ssoc., 1982, 77:393.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cochran, W. G.,Sampling Techniques, 3rd ed., New York: John Wiley, 1977.MATHGoogle Scholar
  8. 8.
    Page, C., Kreling, D. H.. Matsumura, E. M., Comparison of the mean per unit and ratio estimators under a simple applications-motivated model.Statistics and Probability Letters, 1993. 17:97.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lehmann, E. I.,Theory of Point Estimation, New York: John Wiley. 1983.MATHGoogle Scholar

Copyright information

© Science in China Press 1997

Authors and Affiliations

  • Guohua Zou
    • 1
  • Ping Cheng
    • 2
  • Shiyong Feng
    • 2
  1. 1.Department of MathematicsBeijing Normal UniversityBeijingChina
  2. 2.Institute of Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations