Advertisement

Science in China Series A: Mathematics

, Volume 42, Issue 12, pp 1251–1261 | Cite as

Nonstandard decision methods for the solvability of real polynomial equations

  • Guangxing Zeng
Article
  • 22 Downloads

Abstract

For a multivariate polynomial equation with coefficients in a computable ordered field, two criteria of this equation having real solutions are given. Based on the criteria, decision methods for the existence of real zeros and the semidefiniteness of binaly polynomials are provided. With the aid of computers, these methods are used to solve several examples. The technique is to extend the original field involved in the question to a computable non-Archimedean ordered field containing infinitesimal elements.

Keywords

computational algebraic geometry polynomial with real coefficients solvability semidefiniteness infinitesimal element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu Wen-jun,Basic Principle of Machanical Theorem-Prouing in Elementary Geomeiry, Beijing: Science Press. 1984, 208–228.Google Scholar
  2. 2.
    Tarski, K.,A Decision Method for Elementary Algebra and Geometry, Berkeley: Rand Corporation, 1951.MATHGoogle Scholar
  3. 3.
    Seidenberg, A., A new decision method for elementary algebra,Ann. Math., 1954, 60(2): 365.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Yang, L., Hou, X. R., Zeng, Z. B. A complete discrimination system for polynomials,Science in China. Series E, 1996, 39(6): 628.MATHMathSciNetGoogle Scholar
  5. 5.
    Yang, L., Zhang, J. Z., Hou, X. R.,Nonlinear Algebraic Equation System and Automated Theorem Proving, Shanghai: Shanghai Scientific and Technological Education Publishing House, 1996.Google Scholar
  6. 6.
    Heck, A.,Introduction to Maple, New York-Berlin-Heidelberg: Springer-Verlag, 1993.MATHGoogle Scholar
  7. 7.
    Becker, T., Weispfenning, V., Kredel, H., Gröbner Bases: A Computational Approach to Commuative Algebra, New York-Berlin-Heidelberg: Springer-Verlag, 1993.Google Scholar
  8. 8.
    Prestel, A.,Lectures on Formally Real Fields, Lecture Notes in Math, 1903, Berlin-Heidelberg-New York: Springer-Verlag, 1984.Google Scholar
  9. 9.
    Bocknack, J., Coste, M., Roy, M. F.,Géométrie Algébrique Réelle, New York-Berlin-Heidelberg: Springer-Verlag, 1987.Google Scholar
  10. 10.
    Knebusch, M., On the extension of real places,Comment. Math. Helv., 1973, 48(3): 354.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lam, T. Y.,The Theory of Ordered Fields, Lecture Notes in Pure and Appl. Math., 55, New York: Marcel Dekker, 1980, 1–152.Google Scholar
  12. 12.
    Liang, S. X., Li, C. Z., Determination on positive semi-definite of binary polynomials over rationals,Computer Appllications, 1998, 18(3): 28.Google Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Guangxing Zeng
    • 1
  1. 1.Department of MathematicsNanchang UniversityNanchangChina

Personalised recommendations