Fibers and Polymers

, Volume 8, Issue 6, pp 571–578 | Cite as

Production of D-lactic acid by bacterial fermentation of rice



This study describes the synthesis of D-lactic acid from rice by fermentation using microorganisms. Some micro-organisms were found to be active for producing D-lactic acid of high optical purity after an intensive screening test for D-lactic acid bacteria using glucose as substrate. Rice powder was hydrolyzed with a combination of enzymes:α-amylase,β-amylase, and pullulanase, and the resultant rice saccharificate was subjected to the fermentation with the selected D-lactic acid bacteria. After the optimization of this fermentation it has been confirmed that D-lactic acid can be manufactured in a pilot scale.


D-lactic acid Fermentation Microorganism Enzyme Saccharificate Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daicel Chem. Ind. Ltd.,Jpn. Kokai Tokyo Koho, S63-170344 (1988).Google Scholar
  2. 2.
    T. Kobayashi and M. Tanaka,Bio Industry,5, 800 (1988).Google Scholar
  3. 3.
    H. Fukuzaki, M. Yoshida, M. Asano, and M. Kumakura,Eur. Polym. J.,25, 1019 (1989).CrossRefGoogle Scholar
  4. 4.
    Y. Ikada, K. Jamshidi, H. Tsuji, and S. H. Hyon,Macromolecules,20, 904 (1987).CrossRefGoogle Scholar
  5. 5.
    K. Peters and R. Peters,Strahlentherapie,139, 362 (1970).Google Scholar
  6. 6.
    B. M. Shrestha, S. A. Mundorff, and B. G. Bibby,Caries Research,16, 12 (1982).CrossRefGoogle Scholar
  7. 7.
    N. A. Cave,Poultry Science,63, 131 (1984).Google Scholar
  8. 8.
    V. Witte, U. Krohn, and C. C. Emeis,J. Basic Microbiol.,29, 707 (1989).CrossRefGoogle Scholar
  9. 9.
    R. Yu and Y. D. Hang,Biotechnol. Lett.,11, 597 (1989).CrossRefGoogle Scholar
  10. 10.
    Y. Ikada and H. Tsuji,Macromol. Rapid. Commun.,21, 117 (2000).CrossRefGoogle Scholar
  11. 11.
    D. D. Duxburry,Food Processing USA,54, 97 (1993).Google Scholar
  12. 12.
    S. Zhou, T. B. Causey, A. Hasona, K. T. Shanmugam, and L. O. Ingram,Appl. Environ. Microbiol.,69, 399 (2003).CrossRefGoogle Scholar
  13. 13.
    S. Benthin and J. Villadsen,Appl. Microbiol. Biotechnol.,42, 826 (1995).CrossRefGoogle Scholar
  14. 14.
    D. Roy, J. Goulet, and A. LeDuy,Appl. Microbiol. Biotechnol.,24, 206 (1986).CrossRefGoogle Scholar
  15. 15.
    Z. Aksu and T. Kutsal,Biotech. Lett.,8, 157 (1986).CrossRefGoogle Scholar
  16. 16.
    P. Cheng, R. E. Mueller S. Jaeger, R. Bajpai, and E. L. Iannotti,J. Indust. Microbiol.,7, 27 (1991).CrossRefGoogle Scholar
  17. 17.
    S. P. Tsai and S.-H. Moon,Appl. Biochem. Biotechnol.,70, 417 (1998).CrossRefGoogle Scholar
  18. 18.
    Y. Y. Linko and P. Javanainen,Enzym. Microbial. Technol.,19, 118 (1996).CrossRefGoogle Scholar
  19. 19.
    H. Tsuji and Y. Ikada,Macromolecules,26, 6918 (1993).CrossRefGoogle Scholar
  20. 20.
    H. Tsuji, S. H. Hyon, and Y. Ikada,Macromolecules,24, 5651 (1991).CrossRefGoogle Scholar
  21. 21.
    L. M. Marchal,Biotechnol. Bioeng.,63, 344 (1999).CrossRefGoogle Scholar
  22. 22.
    K. Takkinen,J. Biol. Chem.,258, 1007 (1983).Google Scholar
  23. 23.
    C. Mercier,Eur. J. Biochem.,26, 1 (1972).CrossRefGoogle Scholar
  24. 24.
    Y. Matsumura, K. Okazaki, and A. Okajima,Jpn. Patent, 1619642 (1988).Google Scholar
  25. 25.
    S. Okubo, F. Mashige, M. Omori, Y. Hahimoto, K. Nakahara, H. Kanazawa, and Y. Matsushima,Biomed. Chromatogr.,14, 474 (2000).CrossRefGoogle Scholar
  26. 26.
    H. S. Kim,Fibers and Polymers,5(2), 139 (2004).Google Scholar
  27. 27.
    D. B. Lee,Fibers and Polymers,5(4), 259 (2004).CrossRefGoogle Scholar
  28. 28.
    W. Liu, H. C. Kim, P. K. Pak, and J. C. Kim,Fibers and Polymers,7(1), 36 (2006).Google Scholar
  29. 29.
    J. Choi and M. Kang,Fibers and Polymers,7(2), 169 (2006).Google Scholar
  30. 30.
    K. Sunahara and Y. Kobayashi,Jpn. Patent, 1692024 (1983).Google Scholar

Copyright information

© The Korean Fiber Society 2007

Authors and Affiliations

  1. 1.Department of Innovative Industrial TechnologyHoseo UniversityAsanKorea

Personalised recommendations