Science in China Series A: Mathematics

, Volume 42, Issue 11, pp 1129–1136 | Cite as

The stability of the maximum entropy method for nonsmooth semi-infinite programmings

  • Changyu Wang
  • Jiye Han


The convergence of the maximum entropy method of nonsmooth semi-infinite programmings is proved, and the stability and the strong stability of the method are discussed.


semi-Infinite programming maximum entropy method convergence stability strong stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Polak, E., He, L. M., Rate-preserving discretization strategies for semi-infinite programming and optimal,SIAM J. Control and Optimization, 1992, 30(3): 548.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Tanaka, Y., Fukushima, M., Ibaraki, T., A comparative study of several semi-infinite nonlinear programming algorithms,European J. Oper. Res., 1988, 36: 92.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Conn, A. R., Gould, N. I. M., An exact penalty function for semi-infinite programming,Mathematical Programming; 1987, 37(1): 19.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gustafson, S.A., Kortanek, K. O., Semi-infinite programming and applications, inMathematical Programming: The State of the Art (eds. Bachem, A., Grotschel, M., Korte, B.,), Berlin: Springer-Verlag, 1983, 132–157.Google Scholar
  5. 5.
    Goberna, M. A., Lopez, M. A., Conditions for the uniqueness of the optimal solution in linear semi-infinite programming,JOTA, 1992, 72(2): 225.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Goberna, M. A., Lopez, M. A., Optimal value function in semi-infinite programming,JOTA, 1988, 59: 261.MATHMathSciNetGoogle Scholar
  7. 7.
    Rajgopal, J., Bricker, D. L., Polynomial geometric programming as a special case of semi-infinite linear programming,JOTA, 1990, 66(3): 455.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goberna, M. A., Lopez, M. A., Topological stability of linear semi-infinite inequality systems,JOTA, 1996, 89(1): 227.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Huang Zhenyu, Shen Zhuhe, An entropy method for a sort of minmax problems,Chinese Science Bulletin, 1996, 41(17): 1550.MathSciNetGoogle Scholar
  10. 10.
    Wang Yuncheng, Tang Huanwen, Zhang Lewei, A maximum entropy method for semi-infinite minmax problems,Mathematics in Economics (in Chinese), 1996, 13(2): 37.Google Scholar
  11. 11.
    Zhou Guanglu, Wang Changyu, Zhang Yuzhong, An efficient method for semi-infinite programming,Mathematica Numerica Sinica (in Chinese), 1999, 21(1): 1.MATHGoogle Scholar
  12. 12.
    Li Xingsi, An efficient method for a sort of nondifferentiable optimization problems,Science in China (in Chinese), 1994, 24 (4): 371.Google Scholar
  13. 13.
    Tang Huanwen, Zhang Liwei, Wang Xuehua, A maximum entropy method for a sort of constrained nondifferentiable optimization problems,Mathematica Numerica Sinica (in Chinese), 1993, 15(3): 268.MATHGoogle Scholar
  14. 14.
    Tang Huanwen, Zhang Liwei, A maximum entropy method for linear programming,Mathematica Numerica Sinica (in Chinese), 1995, 17(2): 160.Google Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Changyu Wang
    • 1
    • 2
  • Jiye Han
    • 3
  1. 1.Institute of Operations ResearchQufu Normal UniversityQufuChina
  2. 2.Institute of Applied MathematicsChinese Academy of SciencesBeijingChina
  3. 3.Institute of Applied MathematicsChinese Academy of SciencesBeijingChina

Personalised recommendations