Fibers and Polymers

, Volume 8, Issue 5, pp 507–511 | Cite as

Theoretical analysis of the melt spinning process of poly(trimethylene terephthalate) fibers

  • Tae Hwan Oh
  • Young Sik Nam
  • Kap Jin Kim
  • Young Ho Kim


Profiles development of the melt spinning process of poly(trimethylene terephthalate) (PTT) was simulated by a numerical method. The spinning speed of 3 km/min to 5 km/min was analyzed and the characteristic of PTT spinning process was compared with that of poly(ethylene terephthalate) (PET). Velocity development of PTT was slower than that of PET. Although PTT’s spinning temperature was lower than PET’s, the PTT solidified slower because of a smaller super-cooling and the large specific heat capacity. The diameter profile of PTT decreases gradually in comparison with that of PET. PTT’s strain rate has a broader distribution than PET’s and its maximum ranged from 541 to 570 s−1 for PET and 136 to 149 s−1 for PTT. PTT’s tensile stress was smaller than PET’s.


Profiles developments PTT Numerical method Velocity development Strain rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Denton, J. A. Cuculo, and P. A. Tucker,J. Appl. Polym. Sci.,57, 939 (1995).CrossRefGoogle Scholar
  2. 2.
    J. Cao, T. Kikutani, A. Takaku, and J. Shimizu,J. Appl. Polym. Sci.,37, 2683 (1989).CrossRefGoogle Scholar
  3. 3.
    H. H. Goerge,Polym. Eng. Sci.,22, 292 (1982).CrossRefGoogle Scholar
  4. 4.
    K. K. Baht and J. P. Bell,J. Polym. Sci.,39, 319 (1990).Google Scholar
  5. 5.
    S. Kase and T. Matsuo,J. Polym. Sci.,3, 2541 (1965).Google Scholar
  6. 6.
    E. H. Andrews,Brit. J. Appl. Phys.,10, 39 (1959).CrossRefGoogle Scholar
  7. 7.
    N. Dangseeyun, P. Srimoaon, P. Supaphol, and M. Nithitanakul,Thermochimica Acta,409, 63 (2004).CrossRefGoogle Scholar
  8. 8.
    H. H. Chuah,Macromolecules,34, 6985 (2001).CrossRefGoogle Scholar
  9. 9.
    J. S. Grebowicz, H. Brown, H. Chuah, A. Wasiak, P. Sajkiewicz, and A. Ziabicki,Polymer,42, 7153 (2001).CrossRefGoogle Scholar
  10. 10.
    J. Wu, J. M. Schultz, J. M. Samon, A. B. Pangelinan, and H. H. Chuah,Polymer,42, 7141 (2001).CrossRefGoogle Scholar
  11. 11.
    H. H. George, A. Holt, and A. Buckley,Polym. Eng. Sci.,23, 95 (1983).CrossRefGoogle Scholar
  12. 12.
    A. V. Shenoy and V. M. Nadkarni,Text. Res. J.,54, 778 (1984).CrossRefGoogle Scholar
  13. 13.
    T. Matsuo,J. Appl. Polym. Sci.,20, 367 (1976).CrossRefGoogle Scholar
  14. 14.
    A. Dutta and V. M. Nadkarni,Text. Res. J.,54, 35 (1984).CrossRefGoogle Scholar
  15. 15.
    M. Pyda, A. Boller, J. Grebowicz, H. Chuah, B. V. Lebedev, and B. Wunderlich,J. Polym. Sci. B, Polym. Phys.,36, 2499 (1998).CrossRefGoogle Scholar
  16. 16.
    H. H. Cho, S. H. Joo, and T. Kikutani,J. Korean Fiber Soc.,38, 429 (2001).Google Scholar
  17. 17.
    J. B. Park, K. H. Kim, Y. H. Bang, and H. H. Cho,J. Korean Fiber Soc.,33, 798 (1996).Google Scholar
  18. 18.
    W. S. Yoon, S. H. Lee, T. W. Son, B. C. Ji, and K. S. Choi,J. Korean Fiber Soc.,33, 282 (1996).Google Scholar

Copyright information

© The Korean Fiber Society 2007

Authors and Affiliations

  • Tae Hwan Oh
    • 1
  • Young Sik Nam
    • 2
    • 1
  • Kap Jin Kim
    • 3
    • 1
  • Young Ho Kim
    • 4
    • 1
  1. 1.Huvis R&D CenterDaejeonKorea
  2. 2.Department of Organic Materials and Textile SystemChungnam National UniversityDaejeonKorea
  3. 3.Department of Advanced Polymer & Fiber Materials, College of Environment and Applied ChemistryKyung Hee UniversityGyeonggi-doKorea
  4. 4.Department of Organic Materials and Fiber EngineeringSoongsil UniversitySeoulKorea

Personalised recommendations