Advertisement

Fibers and Polymers

, Volume 8, Issue 2, pp 218–224 | Cite as

A study of comfort performance in cotton and polyester blended fabrics. I. Vertical wicking behavior

  • Cheol Jae Hong
  • Jong Bum Kim
Article

Abstract

Vertical wicking model was developed based on Darcy’s law. In the model, permeability coefficient, capillary pressure and fabric thickness were used as the key parameters to describe wicking behavior. For the simulation and test, fiber type and fabric structure were chosen as variables. In a highly porous knit fabric, gravitational effect during the wicking process was significant. The higher the capillary pressure was, the higher was the wicking rise. Surface wetting tension, i.e., the specific fluid affinity of material, was newly defined to characterize different capillary pressures in various types of fabric structures. The model, the methodology and the results could provide an insight into fabric design to produce fabric with an optimum wicking performance.

Keywords

Absorbency Capillary pressure Permeability Pore size Surface wetting tension Wicking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. T. Pierce,J. Text. Inst.,21, T377 (1930).Google Scholar
  2. 2.
    S. Kawabata, “The Standardization and Analysis of Hand Evaluation”, 2nd ed., The Textile Machinery Society of Japan, Osaka, 1980.Google Scholar
  3. 3.
    S. Kawabata, R. Postle, and M. Niwa, “Objective Specification of Fabric Quality, Mechanical Properties and Performance”, The Textile Machinery Society of Japan, Osaka, 1982.Google Scholar
  4. 4.
    J. O. Ajayi,Text. Res. J.,62, 87 (1992).Google Scholar
  5. 5.
    G. Grover, M. A. Sultan, and S. M. Spivak,J. Text. Inst.,84, 1 (1993).CrossRefGoogle Scholar
  6. 6.
    L. Fourt and M. Harris,Text. Res. J.,17, 256 (1947).CrossRefGoogle Scholar
  7. 7.
    G. J. Morris,J. Text. Inst.,14, T449 (1953).Google Scholar
  8. 8.
    D. M. Schurell, S. M. Spivak, and N. R. S. Hollies,Text. Res. J.,55, 394 (1985).CrossRefGoogle Scholar
  9. 9.
    B. Farnworth,Text. Res. J.,56, 653 (1986).CrossRefGoogle Scholar
  10. 10.
    J. A. Wehner, B. Miller, and L. Rebenfeld,Text. Res. J.,58, 581 (1988).Google Scholar
  11. 11.
    J. H. Wang and H. Yasuda,Text. Res. J.,61, 10 (1991).CrossRefGoogle Scholar
  12. 12.
    T. Yasuda, M. Miyama, and H. Yasuda,Text. Res. J.,62, 227 (1992).Google Scholar
  13. 13.
    A. M. Plante, B. V. Holocombe, and L. G. Stephens,Text. Res. J.,65, 293 (1992).CrossRefGoogle Scholar
  14. 14.
    Y. Li, B. V. Holcombe, and F. Apcar,Text. Res. J.,62, 619 (1992).Google Scholar
  15. 15.
    P. Kenis,Text. Res. J.,64, 722 (1994).CrossRefGoogle Scholar
  16. 16.
    J. O. Kim and S. M. Spivak,Text. Res. J.,64, 112 (1994).CrossRefGoogle Scholar
  17. 17.
    J. C. Barnes and B. V. Holcombe,Text. Res. J.,66, 771 (1996).CrossRefGoogle Scholar
  18. 18.
    J. Van Brakel and P. M. Heertjes,Powder Technol.,16, 75 (1977).CrossRefGoogle Scholar
  19. 19.
    E. W. Wahburn,Phys. Rev.,17, 273 (1921).CrossRefGoogle Scholar
  20. 20.
    B. S. Gupta and C. J. Hong,TAPPI J.,77, 171 (1994).Google Scholar
  21. 21.
    B. S. Gupta and C. J. Hong,INJ.,7, 34 (1994).Google Scholar
  22. 22.
    L. A. Richard,Physics,1, 318 (1931).CrossRefGoogle Scholar
  23. 23.
    T. Gillespies,J. Colloids Sci.,13, 32 (1958).CrossRefGoogle Scholar
  24. 24.
    A. L. Ruoff, D. L. Prince, J. C. Giddings, and G. H. Stewart,Kolloid Z,166, 144 (1959).CrossRefGoogle Scholar
  25. 25.
    A. L. Ruoff, G. H. Stewart, H. K. Shin, and J. C. Giddings,Kolloid Z,173, 14 (1960).CrossRefGoogle Scholar
  26. 26.
    F. A. L. Dullien, “Porous Media: Fluid Transport and Pore Structure”, Academic Press, New York, 1979.Google Scholar

Copyright information

© The Korean Fiber Society 2007

Authors and Affiliations

  1. 1.Department of Organic Materials and Fiber EngineeringSoongsil UniversitySeoulKorea

Personalised recommendations