Rendiconti del Circolo Matematico di Palermo

, Volume 54, Issue 1, pp 119–144 | Cite as

Onm-compact spaces

  • Marcelina Mocanu


We give characterizations ofm-compact andm-closed spaces by means of nets and filterbases. We study the images ofm-compact andm-closed sets under various modifications ofM-continuous functions. We introduce the notion ofmc-compact space and investigate some relations betweenmc-compact spaces andM-continuous functions.

AMS Subject Classification 2000


Key words and phrases

m-structure M-continuous function m-compact m-closed mc-compact 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Allam A. A., Abd El-Hakeim K. M.,On β-compact spaces, Bull. Cal. Math. Soc.,81 (1989), 179–182.MATHMathSciNetGoogle Scholar
  2. [2]
    Carnahan D. A.,Some Properties Related to Compactness in Topological Spaces, Ph. D. Thesis, Univ. of Arkansas, 1973.Google Scholar
  3. [3]
    Di Maio G., Noiri T.,On s-closed spaces, Indian J. Pure Appl. Math.,18 (3) (1987), 226–233.MATHMathSciNetGoogle Scholar
  4. [4]
    Dontchev J., Ganster M., Noiri T.,On p-closed spaces, Internat. J. Math. & Math. Sci.,24, No. 3 (2000), 203–212.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Dorsett C.,Semi-compactness, semi-separation axioms and product spaces, Bull. Malaysian Math. Soc.,4 (2) (1981), 143–150.CrossRefMathSciNetGoogle Scholar
  6. [6]
    El-Deeb N., Hasainen I. A., Mashour A. S. Noiri T., Onp-regular spaces, Bull. Math. Soc. Sci. Math. Roumanie, Tome 27 (75), nr. 4, 1983, 311–315.Google Scholar
  7. [7]
    Ganster M., Jafari S., Noiri T.,On pc-compact spaces, Mem. Fac. Sci., Kochi Univ.,23 (2002), 19–26.MATHMathSciNetGoogle Scholar
  8. [8]
    Jafari S.,Generalized Open Sets and Generalized Continuity, Ph. D. Thesis, Institut für Mathematik, Technische Universität Graz, 2004.Google Scholar
  9. [9]
    Jafari S., Noiri T., Popa V.,More on strongly compact spaces, preprint.Google Scholar
  10. [10]
    Maheswari S. N., Thakur S. S.,On α-compact spaces, Bulletin of the Institute of Mathematics, Academia Sinica,13, No. 4 (1985), 341–347.MathSciNetGoogle Scholar
  11. [11]
    Maki H.,On generalizing semi-open and preopen sets, Report for Meeting on Topological Spaces Theory and its Applications, August 1996, Yatsushiro, 13–18.Google Scholar
  12. [12]
    Mashhour A. S., El-Monsef M. E., Hasainen I. A., Noiri T.,Strongly compact spaces, Delta J. Sci.,8 (1984), 30–46.Google Scholar
  13. [13]
    Mocanu M.,On M-continuous functions and product spaces, Annales Univ. Sci. Budapest,47 (2004), 143–166.MathSciNetGoogle Scholar
  14. [14]
    Mocanu M.,Generalizations of open functions, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau,13 (2003), 67–78.MATHMathSciNetGoogle Scholar
  15. [15]
    Noiri T., di Maio G.,Properties of α-compact spaces, III Convegno Nazionale di Topologia, Trieste 1986, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II,18 (1988), pp. 359–369.Google Scholar
  16. [16]
    Noiri T., Popa V.,A unified theory of contra-continuity for functions, Annales Univ. Sci. Budapest,44 (2002), 115–137.MathSciNetGoogle Scholar
  17. [17]
    Noiri T., Popa V.,A unified theory of θ-continuity for functions, Rend. Circ. Matem. di Palermo, Serie II,52 (2003), 163–188.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Noiri T., Popa V.,Faintly m-continuous functions, Chaos, Solitons and Fractals,19 (2004), 1147–1159.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Noiri T., Popa V., “A unified theory of strong θ-continuity for functions”, Acta Math. Hungar. 106 (3) (2005), 167–186.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Popa V., Noiri T.,On M-continuous functions, Anal. Univ. “Dunarea de Jos” Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II,18 (23) (2000), 31–41.Google Scholar
  21. [21]
    Popa V., Noiri T.,On the definitions of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci., Kochi Univ. (Math.),22 (2001), 9–18.MATHMathSciNetGoogle Scholar
  22. [22]
    Popa V., Noiri T.,Slightly m-continuous functions, Radovi Matematicki,10 (2001), 219–232.MATHMathSciNetGoogle Scholar
  23. [23]
    Popa V., Noiri T.,On weakly (τ, m)-continuous functions, Rendiconti del Circ. Matem. di Palermo, Serie II,51 (2002), 295–316.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Popa V., Noiri T.,A unified theory of weak continuity for functions, Rendiconti del Circolo Matematico di Palermo, Serie II, Tomo LI (2002), pp. 439–464.Google Scholar
  25. [25]
    Porter J., Thomas J.,On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc.,138 (1969), 159–170.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    M. K. Singal, A. Mathur,On nearly compact spaces, Boll. Un. Mat. Ital.,4 (2) (1969), 702–710.MathSciNetGoogle Scholar
  27. [27]
    Viglino G.,C-compact spaces, Duke Math. J.,36 (1969), 761–764.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Marcelina Mocanu
    • 1
  1. 1.Department of MathematicsUniversity of BacĂuBacĂuRomania

Personalised recommendations