Advertisement

Rendiconti del Circolo Matematico di Palermo

, Volume 53, Issue 3, pp 401–406 | Cite as

On the reducibility of the postulation Hilbert scheme

  • Alfio Ragusa
  • Giuseppe Zappalá
Article

Abstract

We give a condition in terms of the possible graded Betti numbers compatible with a given Hilbert functionH of 0-dimensional subschemes of ℙ n which implies the reducibility of the postulation Hilbert scheme and of its subscheme which parametrizes reduced subschemes with Hilbert functionH.

1991 Mathematics subject classification

13 D 40 13 H 10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Campanella G.,Standard bases of perfect homogeneous polynomial ideals of height 2, J. Algebra,101 (1986), 47–60.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Charalambous H., Evans E. G.Resolutions with a given Hilbert function, Contemp. Math.,159 (1994), 19–26.MathSciNetGoogle Scholar
  3. [3]
    Gotzmann G.,A stratification of the Hilbert scheme of points in the projective plane, Math. Z.,199 (4) (1988), 539–547.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Hartshorne R.,Algebraic geometry, Springer-Verlag, GTM 52 (1977).Google Scholar
  5. [5]
    Hulett H. A.,Maximum Betti Numbers of Homogeneous Ideals with a Given Hilbert Function, Comm. in Alg.,21 (7) (1993), 2335–2350.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Kleppe J. O.,Maximal families of Gorenstein algebras, Preprint.Google Scholar
  7. [7]
    Iarrobino A.,Hilbert Scheme of points: overview of last ten years, Proc. Sympos. Pure Math.,46, part 2, Amer. Math. Soc., Providence, RI, (1987).Google Scholar
  8. [8]
    Iarrobino A., Kanev V.,Power Sums, Gorenstein Algebras, and Determinantal Loci, Springer-Verlag, LNM 1721 (1999).Google Scholar
  9. [9]
    Mall D.,Connectedness of Hilbert function strata and other connectedness results, J. of Pure and Applied Algebra,150 (2000), 175–205.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Pardue K.,Deformations of graded modules and connected loci on the Hilbert scheme, The Curves Seminar at Queen’s, Vol. XI, Queen’s Papers in Pure and Appl. Math.,105 (1997), 131–139.MathSciNetGoogle Scholar
  11. [11]
    Richert B.,Smallest graded betti numbers, J. Algebra,204 (2001), 236–259.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Ragusa A., Zappalà G.,Partial Gorenstein in Codimension 3, Le Matematiche,55 (2000) II, 353–371.Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • Alfio Ragusa
    • 1
  • Giuseppe Zappalá
    • 2
  1. 1.Dip. di Matematica e InformaticaUniversità di CataniaCataniaItaly
  2. 2.Dip. di Matematica e InformaticaUniversità di CataniaCataniaItaly

Personalised recommendations