Science in China Series B: Chemistry

, Volume 40, Issue 5, pp 485–490 | Cite as

Application of chiral thiazolidine ligands to asymmetric hydrosilation

  • Hong Li
  • Jinshui Yao
  • Binglin He


Seven chiral thiazolidines bound rhodium complexes were synthesized and their catalytic asymmetric hydrosilation properties were investigated. It was found through investigation that the configuration of newly formed chiral centre C 2 * of substituted chiral thiazolidines prepared from L-cysteine or its esters has no effect on the final results of catalytic asymmetric hydrosilation. The direct reason for causing this phenomenon is reported by the present quantitative results for the first time: the rapid racemation of chiral center C 2 * of chiral thiazolidine ligands takes place under the catalysis of rhodium(I) complex [Rh(COD)Cl]2.


asymmetric hydrosilation chiral thiazolidine ligands chiral rhodium(I) complex acetophenone α-phenylethanol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergen, S. H., Nohecia, P, Whelan, al., Asymnietrlc catalysis: Production of chiral diols by enantioselective catalytic intramolecular hydrosilatiorl of olefins,J. An1. Chem. Soc., 1992, 114: 2121.CrossRefGoogle Scholar
  2. 2.
    Uozumi, Y., Hayashi, T., Catalytic asymmetric synthesis of optically active 2-alkanols via hydrosilation of 1-alkenes with a chiral monophosphine-palladium catalyst,J. Am. Chenz. Soc., 1991, 113: 9887.CrossRefGoogle Scholar
  3. 3.
    Uozumi, Y., Hayashi, T., Asymmetric hydrosilation of dihydrofurans by use of palladium-MOP catalyst,Tetrahedron Lett., 1993, 34: 2335.CrossRefGoogle Scholar
  4. 4.
    Halterman, R. L., Synthesis and applications of chiral cyclopentadienyl metal complexes,Chem. Rev., 1992, 92: 965.CrossRefGoogle Scholar
  5. 5.
    Nishigama, H., Yamaguchi, S., Konclo, al., Electronic substituent effect of nitrogen ligands in catalytic asymmetric hydrosilation of ketones: chiral 4-substituted bis(oxazolinyl) pyridines,J. Org. Chem., 1992, 57: 4306.CrossRefGoogle Scholar
  6. 6.
    Balavoine, G., Clinet, J. C., Lellouchi, I., Enantloselective hydrosilation of acetophenone with rhodium/oxazolines catalysts,Tetrahedron Lett., 1989, 30: 5141.CrossRefGoogle Scholar
  7. 7.
    Botteghi, C., Schionato, A., Chelucci, G,et al., Asymmetrische katalysen (XLVI): Enantioselektive hydrosilylierung von ketonen mit [Rh(COD)Cl]2 und optisch aktiven Stickstoff-Liganden,J. Organomet. Chetn., 1989, 370: 17.CrossRefGoogle Scholar
  8. 8.
    Chatt,J., Venanz,L.M., Olefin coordination compounds, Part VI: Diene complexes of rhodium (I),J. Chem. Soc., 1957, (12): 4735.Google Scholar
  9. 9.
    Benkeser, R. A., Landesman, H., Foster, D. J., The formation of arylsilylpotassium compounds,J. Am. Chem. Soc., 1952, 74: 648.CrossRefGoogle Scholar
  10. 10.
    Nagasawa, H. T., Goon, D. J. W., Sherota, F. N., Epimerization at C-2 of 2-substituted thiazolidine-4-carboxylic acids,J. Heterocycl. Chem., 1981, 18: 1047.CrossRefGoogle Scholar
  11. 11.
    Szilagyi, L., Gyorgydeak, Z., Comments on putative stereoselectivity in cysteine-aldehyde reactions: Selective C(2) inversion and C(4) epimerization in thiazolidine-4-carboxylic acids,J. Am. Chem. Soc., 1979, 101: 427.CrossRefGoogle Scholar
  12. 12.
    Pesek, J. J., Frost, J. H., Decomposition of thiazolidines in acidic and basic solutions,Tetrahedron, 1975, 31: 907.CrossRefGoogle Scholar

Copyright information

© Science in China Press 1997

Authors and Affiliations

  • Hong Li
    • 1
  • Jinshui Yao
    • 1
  • Binglin He
    • 1
  1. 1.Nankai UniversityState Key Laboratory of Functional Polymeric Materials for Adsorption and Separation Institute of Polymer ChemistryTianjinChina

Personalised recommendations