Advertisement

Fibers and Polymers

, Volume 3, Issue 1, pp 24–30 | Cite as

Characterization of conductive polypyrrole coated wool yarns

  • Akif Kaynak
  • Lijing Wang
  • Chris Hurren
  • Xungai Wang
Article

Abstract

Wool yarns were coated with conducting polypyrrole by chemical synthesis methods. Polymerization of pyrrole was carried out in the presence of wool yarn at various concentrations of the monomer and dopant anion. The changes in tensile, moisture absorption, and electrical properties of the yarn upon coating with conductive polypyrrole are presented. Coating the wool yarns with conductive polypyrrole resulted in higher tenacity, higher breaking strain, and lower initial modulus. The changes in tensile properties are attributed to the changes in surface morphology due to the coating and reinforcing effect of conductive polypyrrole. The thickness of the coating increased with the concentration of p-toluene sulfonic acid, which in turn caused a reduction in the moisture regain of the wool yarn. Reducing the synthesis temperature and replacing p-toluenesulfonic acid by anthraquinone sulfonic acid resulted in a large reduction in the resistance of the yarn.

Keywords

Polypyrrole Wool Tensile Electrical Moisture Morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Appel, A. Yfantis, W. Gopel, and D. Schmeisser,Synt. Met.,83, 197 (1996).CrossRefGoogle Scholar
  2. 2.
    H. Kuhn, A. Child, and W. Kimbrell,Synt. Met.,71, 2139 (1995).CrossRefGoogle Scholar
  3. 3.
    C. L. Heisey, J. P. Wightman, E. H. Pittman, and H. H. Kuhn,Text. Res. J.,63, 247 (1993).CrossRefGoogle Scholar
  4. 4.
    J. Rodriguez, H. J. Grande, and T. F. Otero in “Handbook of Organic Conductive Molecules and Polymers”, (H. S. Nalwa Ed.), Vol. 2, p. 415, John Wiley and Sons Ltd., 1997.Google Scholar
  5. 5.
    A. Malinauskas,Polymer,42, 3957 (2001).CrossRefGoogle Scholar
  6. 6.
    J. Duchet, R. Legras, and S. Champagne,Synt. Met.,98, 113 (1998).CrossRefGoogle Scholar
  7. 7.
    Y. Kudoh,Synt. Met.,79, 17 (1996).CrossRefGoogle Scholar
  8. 8.
    A. Kaynak,Mater. Res. Bull.,32, 271 (1997).CrossRefGoogle Scholar
  9. 9.
    A. Kaynak, L. Rintoul, and G. A. George,Mater. Res. Bull.,35, 813 (2000).CrossRefGoogle Scholar
  10. 10.
    D. Kincal, A. Kumar, A. Child, and J. Reynolds,Synt. Met. 92, 53 (1998).CrossRefGoogle Scholar
  11. 11.
    G. E. Collins and L. J. Buckley,Synt. Met.,78, 93 (1996).CrossRefGoogle Scholar
  12. 12.
    A. Kaynak, J. Unsworth, R. Clout, A. Mohan, and G. Beard,J. Appl. Poly. Sci.,54, 269 (1994).CrossRefGoogle Scholar
  13. 13.
    A. Kaynak,Fibers and Polymers,2(4), 171 (2001).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2002

Authors and Affiliations

  • Akif Kaynak
    • 1
  • Lijing Wang
    • 1
  • Chris Hurren
    • 1
  • Xungai Wang
    • 1
  1. 1.School of Engineering and TechnologyDeakin UniversityGeelongAustralia

Personalised recommendations