Science in China Series D: Earth Sciences

, Volume 42, Issue 5, pp 544–552 | Cite as

Morphology and geochemistry of zircon: a case study on zircon from the microgranitoid enclaves

  • Xiang Wang
  • Jean-Robert Kienast


There are three types of zircon (i.e. Zircon A, Zircon B and Zircon C) in the microgranitoid enclaves from the Qingtian granite. Zircon A is of the smallest Ipr, Ipy and Iel values with the largest range of variations; Zircon C is of the largest Ipr, Ipy and Iel values with the smallest range of variations; and Zircon B is intermediate among the three types. The microprobe analysis of zircon demonstrates that the contents of trace elements (Hf, U, Y, Th) increase progressively with larger and larger variation from Zircon A through Zircon B to Zircon C. These characters snggest that the three types of zircon in the enclaves may have formed successively during the cooling mess of enclave magma, corresponding to different sites along with the intrusion of enclave magma. Because of positive correlations of the UO2/HfO2ratio with Ipr, the Th02/Y203 ratio with Ipy, and the UO2/(ThO2+Y203) ratio with Iel, it is suggested that the variation in zircon typology is caused by selective substitution of trace elements on different surfaces of zircon. On the basis of enclave petrology and zircon typomorphism, it is believed that the enclave magma may be generated from partial melting of residual materials in deep regions where the granitic magma has been extracted.


zircon typology trace elements microgranitoid enclaves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pupin, J. P., Zircon and granite petrology,Contrib Mineral Petrol., 1980, 73: 207.CrossRefGoogle Scholar
  2. 2.
    Vavra, G., Systematics of internal zircon morphology in major variscan granitoid types,Contrib. Mineral Petrol., 1994. 117: 331.CrossRefGoogle Scholar
  3. 3.
    Benisek, A., Finger, F., Factors controlling the development of prism faces in granite zircons: a microprobe study,Contrib. Mineral Petrol., 1993, 114: 441.CrossRefGoogle Scholar
  4. 4.
    Kostov, I., Zircon morphology as a crystallogenetic indicator,Kristall und Technik, 1973, 8: 11.CrossRefGoogle Scholar
  5. 5.
    Larsen, L. H., Effimoff, I., Composition and habits of individual zircons and zircon crystallization in the northern boulder Batholith, Montana,Geol. Soc. Am. Abs. Prog., 1973, 5: 707.Google Scholar
  6. 6.
    Garpena, J., Gagnol, I., Mailhe, D. et al., L’uranium marqueur de la croissance cristalline: mise en evidence par les traces de fission dans les zircons gemmes d’Espaly (Haute-Loire, France),Bull. Mineral, 1987, 110: 459.Google Scholar
  7. 7.
    Wang, X., Typologie et geochimie du zircon: une approche nouvelle appliqucee a la genese des granites,These Univ. Nice, 1989, 309.Google Scholar
  8. 8.
    Vernon, R. H., Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic environment,Nature (London), 1984, 309: 438.CrossRefGoogle Scholar
  9. 9.
    Bacon, J. C., Magmatic inclusions in silicic and intermediate volcanic rocks,J. Geophys. Res., 1986, 91B: 6091CrossRefGoogle Scholar
  10. 10.
    Dong, C. W., Peng, Y. M., The features and origin of the enclaves in the Qingtian granite, Zhejiang Province,Acta Petrol. Mineral, 1992, 11: 21.Google Scholar
  11. 11.
    Wang, X., Quantitative description of zircon morphology and its dynamics analysis,Science in China, Ser. D, 1998,41(4): 422.Google Scholar
  12. 12.
    Burton, J. A., Prim, R. C., Slichter, W. P., The distribution of solute in crystals grown from the melt (part I),J. Chem. Phys., 1953, 21: 1987.CrossRefGoogle Scholar
  13. 13.
    Shannon, R. D., Revised effective ionic radii and systematic studies of interatomic distances in halide and chalcogenides,Acta Crystallogr, 1976, A32: 751.CrossRefGoogle Scholar
  14. 14.
    Sunagawa, I., Morphology of minerals, inMorphology of Crystals ((ed. Sunagawa, I.), Tokyo: Terra. Sci. Pub. Com., 1987, 63.Google Scholar
  15. 15.
    Romans, P. A., Brown, L. L., White, J. C. An electron microprobe study of yttrium, rare earth, and phosphorus distribution in zoned and ordinary zircon,Am. Mineral., 1975, 60: 475.Google Scholar
  16. 16.
    Knakke, O., Stranski, I. N., Die Theorie des Kristallwachstums,Ergebnisse der exakten Naturwissenchaften, Vol. 26, Berlin Heidelberg: Springer, 1952.Google Scholar
  17. 17.
    Hoppe, G., Petrogenetisch auswertbare morphologische Erscheinungen an akzessorischen Zirkonen,N Jb Miner Abh, 1962, 98: 35.Google Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Xiang Wang
    • 1
  • Jean-Robert Kienast
    • 2
  1. 1.Department of Earth SciencesNanjing UniversityNanjingChina
  2. 2.Labaratoire de PetrologicUniversite de Paris VIIParisFrance

Personalised recommendations