Science in China Series D: Earth Sciences

, Volume 42, Issue 5, pp 491–505 | Cite as

Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet

  • Lin Ding
  • Dalai Zhong


A large area of high-pressure garnet-kyanite granulite is exhumed in the Namjagbarwa area, which provides a window for observing the deep crust rocks and structures of the Tibetan Plateau. Three mineral assemblages can have been distinguished in the garnet-kyanite HP granulites by petrography, i.e. M1. Mus+Bi+P1+Q, M2. Gt+Ky +perphite/antiperphite+Rt+Q, M3. Gt+Sill+Cord+Sp+Ilm ± Opx. Metamorphic conditions of the peak granulite assemblages (M2) formatted by thickening of crusts, with available isotopic ages of 45–69 Ma, are at 1.4—1.8 Gpa and 750—850°. Their retrograde assemblages overprinted by decompressure during the uplift, with available isotopic ages of 18—23 Ma, were formed at 0.60—0.70 Gpa, 621—726°. The thermobarometric evaluation, petrogenetic grid and corresponding isotopic ages indicate a clockwise isothermal decompression metamorphic path. The HP granulite metamorphic history indicates that the collision of the Indian Plate with the Eurasian Plate had begun at 70 Ma, far earlier than the widely accepted 45 Ma.


Tibetan Plateau Namjagbarwa HP granulite metamorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ding Lin, Zhong Dalai, Pan Yusheng et al., Fission-track evidences for the Neocene rapid uplift of the eastem Himalayan systaxis,Chinese Science Bulletin, 1995, 40(16): 1497.Google Scholar
  2. 2.
    Zhong Dalai, Ding Lin, Discovery of high-pressure granulite from Namjagbarwa area,Chinese Science Bulletin, 1995. 40(14): 1–343.Google Scholar
  3. 3.
    Zheng Xilan, Chang Chenfa, Geotectonic characteristics of the lower Yarlung Zangbo River,Geologic Science, 1979, (2): 116.Google Scholar
  4. 4.
    Wang Tianwu, Ma Rui, The metamorphic characteristics of the Namjagbarwa area, southeastern Tibet,Journal of Changchun University of Earth Sciences, 1996, 26: 152.Google Scholar
  5. 5.
    Fuhrman, M. L., Lindsley, D. H., Ternary-feldspar modelling and thermometry,Amricw Mineralogist, 1988, 73: 201.Google Scholar
  6. 6.
    Spear, F. S., Cheney, J. T., A petrogenetic grid for pelitic schists in the system SiO2-Al2O3-FeO-MgO-K2O-H2O,Contributions to Mineralogy ad Petrology, 1989, 101: 149.CrossRefGoogle Scholar
  7. 7.
    Newton, R. C, Haselton, H. T., Thermodynamics of the garnet-plagioclase-A12SiO5-quartz geobarometer, inThermodynamics of Minerals and Melts ((eds. Newton, R. C., Navrotsky, A., Wood, B. J.), New York: Springer-Verlag, 1981, 131–147.Google Scholar
  8. 8.
    Hensen, B. J., Green, D. H., Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressure and tempertures,Contributions to Mineralogy and Petrology, 1973, 38: 151.CrossRefGoogle Scholar
  9. 9.
    Hensen, B. J., Cordierite-garnet bearing assemblages as geothermometers and barometers in garnulite facies terranes,Tectonophysics, 1977, 43: 73.CrossRefGoogle Scholar
  10. 10.
    Feny, J. M., Spear, F. S., Experimental calibration of the partitioning of Fe and Mg between garnet and biotite,Contributions to Mineralogy and Petrology, 1978, 66: 113.CrossRefGoogle Scholar
  11. 11.
    Berman, R. G-, Mixing properties of Ca-Mg-Fe-Mn garnet,American Mineralogist, 1990, 75: 328.Google Scholar
  12. 12.
    Harley, S. L., The origins of granulites: a metamorphic perspective,Geological Magazine, 1989, 126: 215.CrossRefGoogle Scholar
  13. 13.
    Wells, P. R. A., P-T condition in the Moines of the central Highlands, Scotland,Journal of the Geological Society of London, 1979, 136: 663.CrossRefGoogle Scholar
  14. 14.
    Berman, R. G., Thermobarometry using muti-equilibrium calculations: a new technique, with petrological applications,Canadian Mineralogist, 1991, 29: 833.Google Scholar
  15. 15.
    Holland, T. J. B., The reaction albite = Jadeite+quartz determined experimentally in the range 600-1200°,American Mineralogist, 1980, 65: 129.Google Scholar
  16. 16.
    Vielzeuf, D., Montel, J. M., Partial melting of metagreywackes, Part I. Fluidabsent experiments and phase relationships,Contributions to Mineralogy and Petrology, 1994, 117: 375.CrossRefGoogle Scholar
  17. 17.
    Thompson, A. B., Mineral reactions in pelitic rocks, 11. Calculation of some P-T-X (Fe-Mg) phase relations,American Journal of Sciences, 1976, 276: 425.Google Scholar
  18. 18.
    Holdaway, M. J., Stability of andalusite and the aluminum silicate phase diagram,American Journal of Science, 1971, 271: 97.Google Scholar
  19. 19.
    Green, D. H., Ringwood, A. E., An experimental investigation of the gabbro to eclogite transformation and its petro-logical applications,Geochimica et Cosmochimica Acta, 1997, 31: 767.Google Scholar
  20. 20.
    Schreyer, W., Abraham, K., Three-stage metamorphic history of a whiteschist from Sar e Sang, Afghanistan, as part of a former evaporite deposit,Contributions to Mineralogy and Petrology, 1976, 59: 111.CrossRefGoogle Scholar
  21. 21.
    Ding Lin, Zhong Dalai,Uplift Stage of Tibetan Plateau, Lithosphere Structure Evolution and Dynamics of Tibetan Plateau ((eds. Pan Yusheng, Kong Xiangru), Guangzhong: Guangdong Sciences & Technology Press, 1998, 379–400.Google Scholar
  22. 22.
    Carswell, D. A., O’Brien, P. J., Thermobarometry and geotectonic significance of high-pressure granulite: examples from the Moldanubian zone of the Bohemian Massif in Lower Austria,Journal of Petrology, 1993, 34: 427.Google Scholar
  23. 23.
    Zhai Mingguo, Guo Jinghui, Yan Yuehua, The discovery and primary study of the high-pressure from North China,Science in China, Ser. B, 1992, 35(12): 1325.Google Scholar
  24. 24.
    Ma Jun, Wang Renming, The discovery and geologic implications of the assemblages of kyanite+perthite hm HP granulite zone of Xuanhua-Chicheng, China,Acta Petrologic Sinica, 1985, ll: 273.Google Scholar
  25. 25.
    Liu Liang, Zhou Dingwu, Wang Yan et al., Feldsic high-pressure granulites and its geologic implications of Qinling complex from eastern Qinling Mountains, China,Science in China (in Chinese). Ser. B. 1996, 26: 56.Google Scholar
  26. 26.
    Zhong Dalai, Ding Lin, Rising mechanism of the Tibetan Plateau,Science in China (in Chinese), Ser. B, 1996, 26: 289.Google Scholar
  27. 27.
    Dewey, J. F., Cande, S., Pitman, W. C., Tectonic evolution of the India/Eurasia collision zone,Eclogae. Geol. Helv., 1989, 82: 717.Google Scholar
  28. 28.
    Beck, R. A., Burbank, D. W., Sercombe, W. J. et al., Stratigraphic evidence for an early collision between northwest India and Asia,Nature, 1995, 373: 55.CrossRefGoogle Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Lin Ding
    • 1
  • Dalai Zhong
    • 1
  1. 1.Institute of GeologyChinese Academy of SciencesBeijingChina

Personalised recommendations