Rendiconti del Circolo Matematico di Palermo

, Volume 54, Issue 3, pp 329–342 | Cite as

Local and improper Daniell-Loomis integrals

  • E. de Amo
  • M. Díaz Carrillo


In this paper we start from previous results obtained in [7] on the abstract space of Daniell-Loomis integrable functionsL, which is constructed like to the Daniell extension process, but without continuity assumptions on the elementary integral.

The localized integral is used to prove thatL consists of those functions whose local upper and lower integrals are equal and finite, or thatL is closed with respect to improper integration.

Our results are also holded in integration with respect to finitely additive measures.

AMS Subject Classification

28C05 26A42 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. de Amo, I. Chitescu, M. Díaz Carrillo.An approximate functional Radon-Nikodym theorem, Rend. Circ. Mat. Palermo,48 (1999), 443–450.CrossRefMathSciNetMATHGoogle Scholar
  2. [2]
    de Amo E., Díaz Carrillo M.,On abstract Fubini theorems for finitely additive integration, Proc. Amer. Mat. Soc.,123 (9) (1995), 2739–2744.CrossRefMATHGoogle Scholar
  3. [3]
    Anger B., Portenier C.,Radon Integrals, Birkhäuser. Bessel, 1997.Google Scholar
  4. [4]
    Aumann G.,Integralerweiterungen mittels Normen, Arch. Math.,3 (1952), 441–450.CrossRefMathSciNetMATHGoogle Scholar
  5. [5]
    Bobillo Guerrero P., Díaz Carrillo M.,Summable and integrable functions with respect to any Loomis system, Arch. Math.,49 (1987), 245–256.CrossRefMATHGoogle Scholar
  6. [6]
    Díaz Carrillo M., Günzler H.,Daniell-Loomis integrals, Rocky Mt. J. Math.,27 (4) (1997), 1075–1087.MATHCrossRefGoogle Scholar
  7. [7]
    Dunford N., Schwartz J. T.,Linear Operators I, Interscience, New York, 1957.Google Scholar
  8. [8]
    Gould, G. G.,The Daniell-Bourbaki integral for finitely additive measures, Proc. London Math. Soc.,16 (1966), 297–320.CrossRefMathSciNetMATHGoogle Scholar
  9. [9]
    Günzler H.,Integration, Bibliogr. Institut. Mannheim, 1985.MATHGoogle Scholar
  10. [10]
    Loomis L. H.,Linear functionals and content, Amer. J. Math.,7 (1954), 168–182.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Luxemburg W. A. J.,Integration with respect to finitely additive measures, Stud. Econ. Theory,2 (1991), 109–150.MathSciNetGoogle Scholar
  12. [12]
    Pfeffer W. F.,Integrals and Measure, Dekker. New York, 1977.Google Scholar
  13. [13]
    Schäfke F. W.,Lokale Integralnormen und verallgemeinerte uneigentliche Riemann-Stieltjes-Integrale, J. Reine Angew. Math.,289 (1977), 118–134.MathSciNetMATHGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Departamento de Álgebra y Análisis MatemáticoUniversidad de AlmeríiaAlmeríiaSpain
  2. 2.Departamento de Análisis MatemáticoUniversidad de GranadaGranadaSpain

Personalised recommendations