Advertisement

Fibers and Polymers

, Volume 1, Issue 1, pp 25–31 | Cite as

Polymer light-emitting diodes based on poly(3-hexyl thiophene)

  • Chang Seoul
  • Nam-Hee Kim
Article

Abstract

Poly(3-hexyl thiophene)(P3HT) and poly(3-dodecyl thiophene)(P3DT) were polymerized by oxidative coupling with ferric chloride. The P3HT light-emitting device emitted red light and it could be observable in the ordinary indoor light. The device had the turn-on electric field of about 3×107 V/m. The maximum electroluminescene (EL) intensity was obtained when the thickness of polymer layer was about 130 nm in ITO/P3HT/Al device. The maximum external quantum yield was 0.002%. The maximum luminance was 21 cd/m2. The EL intensity decreases with increasing the crystallinity of the polymer layer. By using the oriented poly(3-alkyl thiophene)(PAT) layer as an electroluminescent layer in the ITO/polymer/Al light-emitting devices, the polarized EL light emission was observed. The EL intensity ratio of parallel to perpendicular direction to the stretch direction for P3HT was about 1.40.

Keywords

Thiophene Polymer Layer Thiophene Ring Maximum Luminance Electroluminescence Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Burroughes., D. D. C. Bradley., A. R. Brown., R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes,Nature,347, 539 (1990).CrossRefGoogle Scholar
  2. 2.
    G. Tourillon in “Handbook of Conducting Polymers”, (T. A. Skotheim Ed.), Chapter 9, Marcel Dekker Inc., New York, 1986.Google Scholar
  3. 3.
    A. F. Diaz, K. K. Kanazawa, and G. P. Gardini,J. Am. Chem. Soc. Chem. Commun., 635 (1979)Google Scholar
  4. 4.
    R. D. McCullough, S. Tristram-Nagle, S. P. Williams, R. D. Lowe, and M. Jayaraman,J. Am. Chem. Soc.,115, 4910 (1993).CrossRefGoogle Scholar
  5. 5.
    T.-A. Chen, X. Wu, and R. D. Rieke,J. Am. Chem. Soc.,117, 233 (1995).CrossRefGoogle Scholar
  6. 6.
    Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino,Jpn. J. Appl. Phys.,30(11B), L1938 (1991).Google Scholar
  7. 7.
    K. Yoshino, R. I. Sugimoto, S. Takeda, and Hal-Bon Gu,Chem. Express,1, 635 (1986).Google Scholar
  8. 8.
    X. Wu, T.-A. Chen, and R. D. Rieke,Macromolecules,29, 7671 (1996).CrossRefGoogle Scholar
  9. 9.
    K. Tashiro, K. Ono, Y. Minagawa, M. Kobayashi, T. Kawai, and K. Yoshino,J. Polym., Sci., Part II, Polym. Phys. Ed.,29, 1223 (1991).CrossRefGoogle Scholar
  10. 10.
    K. Tashiro and M. Kobayashi,Polymer,38, 2867 (1997).CrossRefGoogle Scholar
  11. 11.
    F. Bertinelli and C. Della Casa,Polymer,37, 5469 (1996).CrossRefGoogle Scholar
  12. 12.
    M. J. Winokur, D. Spiegel, Y. Kim, S. Hotta, and A. J. Heeger,Synth. Met.,28, C419 (1989).Google Scholar
  13. 13.
    S. Marchant and P. J. S. Foot,Polymer,38, 1749 (1997).CrossRefGoogle Scholar
  14. 14.
    Z. Mo, K.-B. Lee, Y. B. Moon, M. Kobayashi, A. J. Heeger, and F. Wudl,Macromolecules,18, 1972 (1985).CrossRefGoogle Scholar
  15. 15.
    P. Dyreklev, M. Berggren, O. Inganaes, M. R. Andersson, O. Wennerstroem, and T. Hjertberg,Adv. Mater.,7, 43 (1995).CrossRefGoogle Scholar
  16. 16.
    F. Garnier, G. Tourillon, J. Y. Barraud, and H. Dexpert,J. Mater. Sci.,20, 2687 (1985).CrossRefGoogle Scholar
  17. 17.
    J. M. Bharathan and Y. Yang,J. Appl. Phys.,84, 3207 (1998).CrossRefGoogle Scholar
  18. 18.
    R. Oesterbacka, G. Juska, K. Arlauskas, A. J. Pal, K.-M. Kaellman, and H. Stubb,J. Appl. Phys.,84, 3359 (1998).CrossRefGoogle Scholar
  19. 19.
    K. Tashiro, K. Ono, Y. Minagawa, M. Kobayashi, T. Kawai, and K. Yoshino,J. Polym. Sci.,:Part B:Polym. Phys. Ed.,29, 1223 (1991).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2000

Authors and Affiliations

  1. 1.Department of Textile EngineeringInha UniversityNam-gu, IncheonKorea

Personalised recommendations