Advertisement

American Potato Journal

, Volume 52, Issue 10, pp 289–312 | Cite as

Dynamic mechanical properties of the Russet Burbank potato as related to temperature and bruise susceptibility

  • C. L. Peterson
  • C. W. Hall
Article

Abstract

An electro-mechanical vibration exciter and a dropped weight impact device were utilized to determine changes in dynamic mechanical properties of the Russet Burbank potato as influenced by temperature. The vibration exciter was utilized to study the compressive stress-strain relationship for core samples of tuberin the frequency range of 50 to 300 Hz and for temperatures from 35 to 85°F (2 to 30°C)

Complex dynamic modulus, storage modulus, and phase angle were found to be independent of temperature but increased with frequency in the interval 50 to 300 Hz. Significant differences in the dynamic mechanical properties of tuber flesh were found according to location along the tuber where the samples were selected. In this study, the complex dynamic modulus was lower for the stem end than for the bud end of the tuber as was the bruise susceptibility

Susceptibility of the tubers to bruise damage was evaluated by impacting the tubers with a dropped weight. Depth of bruise was found to be equivalent to length, width, area, or volume of bruise for determining bruise susceptibility. When the velocity of approach of the weight was considered, the ability to predict changes in bruise susceptibility was doubled over that of using temperature alone. This is an improtant finding because it may account for some of the unexplained variations in results of some previous studies where the impact device has been used

The response of the Russet Burbank potato to impact was determined by placing a piezoelectric accelerometer in a falling weight. The acceleration-time history of the impact was recorded on a storage oscilloscope. Impact parameters were highly dependent on height of drop. Results of numerical integration of the acceleration-time curves are presented. Peak deformation was found to occur after the point of peak acceleration. Discontinuities in the acceleration-time traces were good indicators of severe damage

Keywords

Impact Parameter AMERICAN Potato Journal Peak Acceleration Dynamic Mechanical Property Russet Burbank Potato 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Resumen

Para determinar cambios en las propiedades mecánicas dinámicas influenciados por la temperatura de papas Russet Burbank, se usaron un excitador eléctrico-mecánico de vibración y un instrumento de impacto por caida de pesos. El excitador de vibración fue usado para estudiar la relación-compresión-tensión en muestras centrales de tubérculos en el rango de frecuencia de 50–300 Hz y para temperatures desde 35 a 85°F (2–30°C)

Se encontró que el modulo complejo dinámico, el módulo de almacenamiento, y el ángulo de fase fueron independientes de la temperatura, pero incrementaron con la frecuencia en el intervalo 50–300 Hz. Se encontraron diferencias significativas en las propiedades mecánicas del tubérculo de acuerdo a la región, a lo largo del tubérculo, de la cual sé seleccionaron las muestras. En este estudio, el módulo complejo dinámico fue menor para la parte basai que para la parte apical del tubérculo, tal como fue la susceptibilidad al magullamiento

La susceptibilidad de los tubérculos al daño por magullamiento fue evaluada impactando los tubérculos por medio de la caída de un peso. Al determinar la susceptibilidad al magullamiento se encontró que la profundidad de magullamiento fue equivalente al largo, ancho, área o volúmen de magullamiento. Cuando la velocidad de acercamiento del peso fue con siderada, la habilidad de predecir cambios en la susceptibilidad al magullamiento fue el doble de cuando se usó solo la temperatura. Este es un hallazgo importante porque podŕia dar razón de algunas variaciones inexplicadas en los resultados de estudios previos en los cuales se usó el instrumente de impacto

Para determinar la respuesta al impacto en los tubérculos de Russet Burbank se colocó un medidor de aceleración piezoelećtrico en el peso en caída. La historia del tiempo de aceleración del impacto fue registrada por medio de un osciloscopio de almacén. Se presentan los resultados de la integración numérica de las curvas del tiempo de aceleración. Se encontró que la deformación de los picos ocurría a continuación del pico de aceleración. Discontinuidades en las trazas del tiempo de aceleración fueron buenos indicadores de daño severo

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Aspinwall, J. S., R. Q. Hepherd.and P. Hebblethwaite. 1962. A method for assessment of potato damage resulting from mechanical handling. J. Agric. Eng. Res. 7 (1): 71–72.Google Scholar
  2. 2.
    Finney, E. E., Jr. 1963. The viscoelastic behavior of the potato, Solanum tuberosum, under quasistatic loading. Unpublished Ph.D. dissertation, Michigan State University, East Lansing, Michigan. 141p.Google Scholar
  3. 3.
    Fletcher, S. W., III, N.N. Mohsenin, J. R. Hammerie, and L. D. Tukey. 1965. Mechanical behavior of selected fruits and vegetables under fast rates of loading. Trans. of the ASAE 8(3): 324–326.Google Scholar
  4. 4.
    Fluck, R. C., and E. M. Ahmed. 1972 Impact testing of fruits and vegetables. ASAE Paper 72-306, American Society of Agricultural Engineers, St. Joseph, Michigan.Google Scholar
  5. 5.
    Fluck, R. C., F. S. Wright, and W. E. Splinter. 1968. Compression plunger, skinning and friction properties of sweet potatoes. Trans, of the ASAE 11 (2): 167–170, 174.Google Scholar
  6. 6.
    Fridley R. B., and P. A. Adrian. 1966. Mechanical properties of peaches, pears, apricots, and apples. Trans. of the ASAE 9(1): 135–138, 142.Google Scholar
  7. 7.
    Green, H. C. 1956. Potato damage. J. Agric. Eng. Res. 1(1) 56–62.Google Scholar
  8. 8.
    Green, H. C. 1957. Experiments on the storage of damage potatoes. J. Agric. Eng. Res. 2(2): 141–145.Google Scholar
  9. 9.
    Green, H. C. 1959. Some experiments on the storage of washed and damaged potatoes. J. Agric. Eng. Res. 4(3):255–259.Google Scholar
  10. 10.
    Green, H.C. 1962. An experiment with damaged seed potatoes. J. Agric. Eng. Res. 7(2): 165–167.Google Scholar
  11. 11.
    Hamann, D.D. 1968. Some dynamic mechanical properties of apple fruit flesh. ASAE Paper 68-330, American Society of Agricultural Engineers, St. Joseph, Michigan, 49085.Google Scholar
  12. 12.
    Hammerle, J. R., and N. N. Mohsenin. 1966. Some dynamic aspects of fruits impacting hard and soft materials. Trans, of the ASAE 9(4): 484–488.Google Scholar
  13. 13.
    Hesen, J. C.,and E. Kroesbergen. 1960. Mechanical damage to potatoes I. Eur. Potato J. 3(1): 30–46.CrossRefGoogle Scholar
  14. 14.
    Johnston, E. F., and J. B. Wilson. 1969. The effect of soil temperatures at harvest on the bruise resistance of potatoes. Am. Potato J. 46(3): 75–82.CrossRefGoogle Scholar
  15. 15.
    Kunkel, R. 1967. Factors known to affect blackspot in potatoes. The Sixth Annual Washington State Potato Conference Proceedings. Moses Lake, Washington. p. 67–86.Google Scholar
  16. 16.
    Kunkel, R., and W.H. Gardner, 1959. Blackspot of Russet Burbank potatoes. Proc. Am. Soc. Hortic. Sci. 73:436–444.Google Scholar
  17. 17.
    Kunkel, R., and W. H. Gardner. 1965. Potato tuber hydration and its effect on blackspot of Russet Burbank potatoes in the Columbia Basin of Washington. Am. Potato J. 42(5): 109–124.CrossRefGoogle Scholar
  18. 18.
    Lampe, K. 1960. Die Widerstandsfahigkeit von kartoffelknollen gegen beschadigungen. Eur. Potato J. 3(1): 13–29.CrossRefGoogle Scholar
  19. 19.
    Maas, E. F. 1966. a simplified potato bruising device. Am. Potato J. 43 (11) 424–426.CrossRefGoogle Scholar
  20. 20.
    Mohsenin, N. N. 1971. Mechanical properties of fruit and vegetables, review of a decade of research applications and future needs. ASAE Paper 71-849. American Society of Agricultural Engineers, St. Joseph, Michigan, 49085.Google Scholar
  21. 21.
    Mohsenin, N. N., and H. Goehlich. 1962. Techniques for determination of mechanical properties of fruits and vegetables as related to design and development of harvesting and processing machinery. J. Agric. Eng. Res. 7(4): 300–315.Google Scholar
  22. 22.
    Parke, D. 1963. The resistance of potatoes to mechanical damage caused by impact loading. J. Agric. Eng. Res. 8(2): 173–177.Google Scholar
  23. 23.
    Peterson, C. L. 1973. Dynamic mechanical properties and bruise susceptibility of the Russet Burbank potato as influenced by temperature. An unpublished Ph.D. Dissertation, Washington State University, Pullman, WA.Google Scholar
  24. 24.
    Peterson, C. L., and C. W. Hall. 1974. Thermorheological simple theory applied to the Russet Burbank potato. Trans. of the ASAE 17(3): 546–552.Google Scholar
  25. 25.
    Philipson, A., and D. C. Lawrence. 1963. comparison of potato damage assessments made at different time intervals after harvesting. J. Agric. Eng. Res. 8(1): 31–34.Google Scholar
  26. 26.
    Reeve, R. M. 1968. Preliminary histological observations on internal blackspot in potatoes. Am. Potato J. 25(5): 157–167.CrossRefGoogle Scholar
  27. 27.
    Robertson, I. M. 1961. The use of para-cresol for the detection of damage in the potato tuber. J. Agric. Eng. Res. 6(3): 220–221.Google Scholar
  28. 28.
    Sawyer, R. L., and G. H. Collins. 1960. Blackspot of potatoes. Am. Potato J. 37(4): 115–126.CrossRefGoogle Scholar
  29. 29.
    Schippers, P. A. 1971. Measurement of black spot susceptibility of potatoes. Am. Potato J. 48(3): 71–81.CrossRefGoogle Scholar
  30. 30.
    Smittle, D. A. 1971. Influence of temperature on harvest damage. The Tenth Annual Washington State Potato Conference Proceedings, Moses Lake, Washington. p. 27–32.Google Scholar
  31. 31.
    Sparks, W.C. 1957. Mechanical injury of potatoes from harvest to consumer. Idaho Agr. Exp. Sta. Bull. 280.Google Scholar
  32. 32.
    Witz, R. L. 1954. Measuring resistance of potatoes to bruising. Agric. Eng. 35(4): 241–244.Google Scholar
  33. 33.
    Wright, F.S., and W. E. Splinter. 1968. Mechanical behavior of sweet potatoes under slow loading and impact loading. Trans. of the ASAE 11(6): 765–770.Google Scholar

Copyright information

© Springer 1975

Authors and Affiliations

  • C. L. Peterson
    • 1
  • C. W. Hall
    • 2
  1. 1.University of IdahoMoscow
  2. 2.College of EngineeringWashington State UniversityPullman

Personalised recommendations