Advertisement

Science in China Series B: Chemistry

, Volume 42, Issue 5, pp 552–560 | Cite as

A new exact quantum mechanical rovibrational kinetic energy operator for penta-atomic systems in internal coordinates

  • Guangju Chen
  • Yuxue Li
Article

Abstract

The concrete molecule-fixed (MF) kinetic energy operator for penta-atomic molecules is expressed in terms of the parameter δ, the matrix element Gij, and angular momentum operatorj. The applications of the operator are also discussed. Finally, a general compact form of kinetic energy operator suitable for calculating the rovibrational spectra of polyatomic molecules is presented.

Keywords

penta-atomic systems rovibrational kinetic energy operator internal coodinates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carbo, R. ed.,Current Aspects of Quantum Chemistry, Amsterdam: Elsevier, 1982, 99–125.Google Scholar
  2. 2.
    Handy, N. C., The derivation of vibration-rotation kinetic energy operators in internal coordinates,Mol. Phys., 1987, 61: 207.CrossRefGoogle Scholar
  3. 3.
    Lukka, T. J., A simple method for the derivation of exact quantum-mechanical vibration-rotation Hamiltonian in term of internal coordinates,J. Chem. Phys, 1995, 102: 3945.CrossRefGoogle Scholar
  4. 4.
    Chen, G. J., Liu, R. Z., A new method for the derivation of exact vibration rotational kinetic energy operator in internal coordinates,Science in China, Ser. B, 1997, 40: 517.CrossRefGoogle Scholar
  5. 5.
    Bramley, M. J., Green, W. H. Jr., Handy, N. C., Vibration-rotation coordinates and kinetic energy operator for plyatomic molecules,Mol. Phys., 1991, 73: 1183.CrossRefGoogle Scholar
  6. 6.
    Chen, G. J., Tang, A. Q., Fu, X. Y., The rotation-vibration coupling equation kinetic energy operator for plyatomic molecules in internal coordinates,Int. J. Quantum Chem., 1992, 43: 713.CrossRefGoogle Scholar
  7. 7.
    Cssszsr, A. G., Handy, N. C., On the form of the exact quantum mechanical vibrational kinetic energy operator for penta-atomic molecules in internal coordinates,Mol. Phys, 1995, 86: 959.CrossRefGoogle Scholar
  8. 8.
    Xantheas, S. S., Sutcliffe, B. T., The Hamiltonian for a weakly interacting trimer of plyatomic monomers,J. Chem. Phys., 1995, 103: 8022.CrossRefGoogle Scholar
  9. 9.
    Chen, G. J., Liu, R. Z., Exact quantum mechanical vibration-rotation kinetic energy operator of four-particle system in various coordinates,Science in China, Ser. B, 1996, 39: 627.Google Scholar
  10. 10.
    Brink, D. M., Stachler, G. R.,Angular Momentum, Oxford: Clarendon, 1962, 106.Google Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Guangju Chen
    • 1
  • Yuxue Li
    • 1
  1. 1.Department of ChemistryBeijing Normal UniversityBeijingChina

Personalised recommendations