Folia Microbiologica

, Volume 9, Issue 6, pp 374–379 | Cite as

Biosynthesis of methionine in an ethionine-resistant strain ofCandida utilis

  • Marie Musílková
  • Z. Fencl


The strainCandida utilis T 20 adapted to a high concentration of ethionine, excretes considerable amounts of methionine in a synthetic medium, about 40 times as much as the original non-adapted strain. At the same time, the amount of methionine in yeast cells incrncreased, predominantly in the pool (9 times as much as in the control). This ability to produce greater amounts of methionine in the pool or to excrete it into the medium is not permanent, since after 5 passages on agar with ut ethionine the amount of methionine was practically not increased as compared with the original non-adapted strain.

An increase in free methionine and of methionine excreted into the medium was found on cultivating the strain in a molasses-containing medium, too.


Methionine Synthetic Medium Ethionine Candida Utilis Reciprocal Shaker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Биосннтез метио нина у штамма Candida utilis, устойчивого к зтионину


Штамм Candida utilis T 20, адаптированный к высокой концетраации зтонина, выделяет в куль тивационную синтетическую среду значительное количество метионина,—приблизительно в 40 раз больще, чем первоначальный неадаптированный штамн. Одновременно повышается и содержание метионина в дрожжевых клетках, преимущественно в «pool» (в 9 раз больше, чем в контроле). Эта способность образовать большие количества метионина в «pool» или выделять его в среду оказывается непостоянной, так как после 5 пассажей на среде с агаром без этионина количество метионина практически не повышалось по сравнению с первоначальным неадаптированным штаммом.

Повышение содержания свободного метионина и метионина, выделяемого в среду, наблюдалось и при культивации адаптированного штамма на среде с мелассой.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelberg, E. A.:Selection of bacterial mutants which excrete antagonists of antimetabolites. J. Bacteriol. 76: 326, 1958.PubMedGoogle Scholar
  2. Apple, M. A., Brandley, S. G.:Effect of 6-mercaptopurine on induction of α-glucosidase in Candida. Proc. Soc. exp. Biol. & Med. 112: 139, 1963.Google Scholar
  3. Cestari, A., Dessi, P.:Action of ethionine on the bacterial growth. Giorn. microbiol. 5: 39, 1958. C. A. 54: 4769a, 1960.Google Scholar
  4. Dyer, Helen M.:Evidence of the physiological specifity of methionine in regard to the methylthiol group: the synthesis of S-ethylhomocysteine (ethionin) and a study of its availability for growth. J. biol. Chem. 124: 519, 1938.Google Scholar
  5. Halvorson, H. O., Spiegelman, S.:The inhibition of enzyme formation by amido-acid analogues. J. Bacteriol. 64: 207, 1952.PubMedCrossRefGoogle Scholar
  6. Harrison, E., Lees, K. A., Wood, F.:The assay of vitamin B 12.Part VI. Microbiological estimation with mutant of Escherichia coli by the plate method. Analyst 76: 696, 1951.CrossRefGoogle Scholar
  7. Johansonn, K. R.:Response to and assay of vitamin B 12 by a mutant of Escherichia coli. Proc. Soc. exp. Biol. & Med. 83: 448, 1953.Google Scholar
  8. Maw, G. A.:S-methylcysteine and S-ethylcysteine in the sulfur metabolism of yeast. Biochem. J. 80: 28P, 1961a.Google Scholar
  9. Maw, G. A.:Ability of S-methyl-l-cysteine to annual the inhibition of yeast growth by l-ethionine and S-ethyl-l-cysteine. J. gen. Microbiol. 28: 441, 1961b.Google Scholar
  10. Munier, R., Cohen, G. N.:Incorporation d'analogues structuraux d'amino-acides dans les protéines bactériennes au cours de leur synthèse in vivo. Biochem. biophys. Acta 31: 378, 1959.PubMedCrossRefGoogle Scholar
  11. Oakberg, E. F., Luria, S. E.:Mutation to sulfonamide resistance in Staphylococcus aureus. Genetics 32: 249, 1947.PubMedGoogle Scholar
  12. Parks, L. W.:S-adenosylethionine and ethionine inhibition. J. biol. Chem. 232: 169, 1958.PubMedGoogle Scholar
  13. Petrov, D. F., Grableva, T. I.:Microbiological quantitative determination of methionine. USSR pat 134, 394, 1960. C.A. 55: 14178h, 1961.Google Scholar
  14. Richmond, M. H.:The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bact. Rev. 26: 398, 1962.PubMedGoogle Scholar
  15. Rowbury, R. J., Woods, D. D.:Repression of methionine synthesis in Escherichia coli. J. gen. Microbiol. 22: 129, 1961.Google Scholar
  16. Sato, M., Uemura, T.:Halophilic character of shoyu yeast. IV. Effects of inhibitors on the halophilic behavior of the yeast. 1 Nippon Nôgei Kagaku Kaishi, 33: 13, 1959. C.A. 55: 2367a, 1961.Google Scholar
  17. Scherr, G. H., Rafelson, M. E.:The direct isolation of mutants producing increased amounts of metabolites. J. appl. Bact. 25: 187, 1962.Google Scholar
  18. Wolley, D. W.:A study of antimetabolites. J. Wiley & Sons, London, 1952.Google Scholar

Copyright information

© Nakladatelství Československé akademie věd 1964

Authors and Affiliations

  • Marie Musílková
    • 1
  • Z. Fencl
    • 1
  1. 1.Department of Technical Microbiology, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations