Folia Microbiologica

, Volume 46, Issue 2, pp 127–132 | Cite as

Penicillin V production byPenicillium chrysogenum in the presence of Fe3+ and in low-iron culture medium

  • É. Leiter
  • T. Emri
  • G. Gyémánt
  • I. Nagy
  • Imre Pócsi
  • G. Winkelmann
  • István Pócsi


Late-exponential-phasePenicillium chrysogenum mycelia grown in a complex medium possessed an intracellular iron concentration of 650 μmol/L (2.2±0.6 μmol per g mycelial dry mass). This iron reserve was sufficient to ensure growth and antibiotic production after transferring mycelia into a defined low-iron minimal medium. Although the addition of Fe3+ to the Fe-limited cultures increased significantly the intracellular iron levels the surplus iron did not influence the production of penicillin V. Supplements of purified majorP. chrysogenum siderophores (coprogen and ferrichrome) into the fermentation media did not affect the β-lactam production and intracellular iron level. Neither 150 nor 300 μmol/L extracellular Fe3+ concentrations disturbed the glutathione metabolism of the fungus, and increased the oxidative stress caused by 700 mmol/L H2O2. Nevertheless, when iron was applied in the FeII oxidation state the oxidative cell injuries caused by the peroxide were significantly enhanced.


Penicillium Chrysogenum Intracellular Iron Penicillin Production Phenoxyacetic Acid Define Culture Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





glutathione reductase




glutathione disulfide


isopenicillin N synthase


phenoxyacetic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson M.E.: Determination of glutathione and glutathione disulphide in biological samples.Meth. Enzymol.113, 548–555 (1985).PubMedCrossRefGoogle Scholar
  2. Bainbridge Z.A., Scott R.I., Perry D.: Oxygen utilization by isopenicillin N synthase fromPenicillium chrysogenum.J. Chem. Tech. Biotechnol.55, 233–238 (1992).Google Scholar
  3. Bundgaard H., Ilver K.: A new spectrophotometric method for the determination of penicillins.J. Pharm. Pharmac.24, 790–794 (1972).Google Scholar
  4. Charlang G., Ng B., Horowitz N.H., Horowitz R.M.: Cellular and extracellular siderophores ofAspergillus nidulans andPenicillium chrysogenum.Mol. Cell Biol.1, 94–100 (1981).PubMedGoogle Scholar
  5. Drechsel H., Winkelmann G.: Iron chelators and siderophores, pp. 1–49 in G. Winkelmann, C.J. Carrano (Eds):Transition Metals in Microbial Metabolism. Harwood Academic Publishers, Amsterdam 1997.Google Scholar
  6. Dombovári J., Becker J.S., Kuhn A.J., Schröder W.H., Dietze H.J.: Multielement analysis of small plant tissue samples using inductively coupled plasma mass spectrometry.Atomic Spectr.21, 37–41 (2000a).Google Scholar
  7. Dombovári J., Papp L., Mátyus J., Varga Z., Kakuk G.: Analysis of human blood, plasma and hair samples, using ICP-OES, GAAS and spectrographic methods.Magyar Kém. Folyóirat.106, 230–237 (2000b).Google Scholar
  8. Emri T., Bartók G., Szentirmai A.: Regulation of specific activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase inPenicillium chrysogenum.FEMS Microbiol. Lett.117, 67–70 (1994).CrossRefGoogle Scholar
  9. Emri T., Pócsi I., Szentirmai A.: Phenoxyacetic acid induces glutathione-dependent detoxification and depletes the glutathione pool inPenicillium chrysogenum.J. Basic. Microbiol.37, 181–186 (1997a).PubMedCrossRefGoogle Scholar
  10. Emri T., Pócsi I., Szentirmai A.: Glutathione metabolism and the protection against oxidative stress caused by peroxides inPenicillium chrysogenum.Free Rad. Biol. Med.23, 809–814 (1997b).PubMedCrossRefGoogle Scholar
  11. Emri T., Pócsi I., Szentirmai A.: Changes in the glutathione (GSH) metabolism ofP. chrysogenum grown on different nitrogen, sulfur and carbon sources.J. Basic Microbiol.38, 3–8 (1998).CrossRefGoogle Scholar
  12. Emri T., Sámi L., Szentirmai A., Pócsi I.: Co-ordination of the nitrate and nitrite assimilation, the glutathione and free radical metabolisms, and the pentose phosphate pathway, inPenicillium chrysogenum.J. Basic Microbiol.39, 109–115 (1999a).CrossRefGoogle Scholar
  13. Emri T., Pócsi I., Szentirmai A.: Analysis of the oxidative stress response ofPenicillium chrysogenum to menadione.Free Rad. Res.30, 125–132 (1999b).CrossRefGoogle Scholar
  14. Emri T., Leiter É., Pócsi I.: Effect of phenoxyacetic acid on the glutathione metabolism ofPenicillium chrysogenum.J. Basic Microbiol.40, 93–104 (2000).CrossRefGoogle Scholar
  15. Eriksen S.H., Jensen B., Schneider I., Kaasgaard S., Olsen J.: Uptake of phenoxyacetic acid byPenicillium chrysogenum.Appl. Microbiol. Biotechnol.42, 945–950 (1995).PubMedCrossRefGoogle Scholar
  16. Halliwell B., Gutteridge J.M.C.:Free Radicals in Biology and Medicine. Oxford University Press, Oxford 1999.Google Scholar
  17. van der Helm D., Winkelmann G.: Hydroxamates and polycarboxylates as iron transport agents (siderophores) in fungi, pp. 39–98 in G. Winkelmann, D.R. Winge (Eds):Metal, Ions in Fungi. Marcel Dekker, New York 1994.Google Scholar
  18. Henriksen C.M., Nielsen J., Villadsen J.: Influence of the dissolved oxygen concentration on the penicillin biosynthetic pathway in steady-state cultures ofPenicillium chrysogenum.Biotechnol. Prog.13, 776–782 (1997).CrossRefGoogle Scholar
  19. Henriksen C.M., Nielsen J., Villadsen J.: Modelling of the protonophoric uncoupling by phenoxyacetic acid of the plasma membrane potential ofPenicillium chrysogenum.Biotechnol. Bioeng.60, 761–767 (1998).PubMedCrossRefGoogle Scholar
  20. Heymann P., Ernst J.F., Winkelmann G.: Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) inSaccharomyces cerevisiae as a member of the major facilitator superfamily.BioMetals12, 301–306 (1999).PubMedCrossRefGoogle Scholar
  21. Hödt W., Römheld V., Winkelmann G.: Fusarinines and dimerum acid, mono- and dihydroxamate siderophores fromPenicillium chrysogenum, improve iron utilization by strategy I and strategy II plants.BioMetals13, 37–46 (2000).CrossRefGoogle Scholar
  22. Jaklitsch W.M., Hampel W., Röhr M., Kubicek C.P., Gamerith G.: α-Aminoadipate pool concentration and penicillin biosynthesis in strains ofPenicillium chrysogenum.Can. J. Microbiol.32, 473–480 (1986).PubMedCrossRefGoogle Scholar
  23. Jalal M.A.F., van der Helm D.: Isolation and spectroscopic identification of fungal siderophores, pp. 235–269 in G. Winkelmann (Ed.)CRC Handbook of Microbial Iron Chelators. CRC Press, Boca Raton 1991.Google Scholar
  24. Jarvis F.G., Johnson M.J.: The mineral nutrition ofPenicillium chrysogenum Q176.J. Bacteriol.59, 51–60 (1950).PubMedGoogle Scholar
  25. Ledenfeld T., Ghali D., Wolschek M., Kubicek-Pranz E.M., Kubicek C.P.: Subcellular compartmentation of penicillin biosynthesis inPenicillium chrysogenum.J. Biol. Chem.268, 665–671 (1993).Google Scholar
  26. Lesuisse E., Labbe P.: Reductive iron assimilation inSaccharomyces cerevisiae, pp. 149–178 in G. Winkelmann, D.R. Winge (Eds):Metal Ions in Fungi. Marcel Dekker, New York 1994.Google Scholar
  27. Nielsen J., Johansen C.L., Villadsen J.: Culture fluorescence measurements during batch and fed-batch cultivations withPenicillium chrysogenum.J. Biotechnol.38, 51–62 (1994).CrossRefGoogle Scholar
  28. Nielsen J.:Physiological Engineering Aspects of Penicillium chrysogenum. Polyteknisk Forlag, Lyngby (Denmark) 1995.Google Scholar
  29. Peterson G.L.: Determination of total protein.Meth. Enzymol.91, 86–105 (1983).Google Scholar
  30. Pinto M.C., Mata A.M., López-Barea J.: Reversible inactivation ofSaccharomyces cerevisiae glutathione reductase under reducing conditions.Arch. Biochem. Biophys.228, 1–12 (1984).PubMedCrossRefGoogle Scholar
  31. Pócsi I., Pusztahelyi T., Bogáti M.S., Szentirmai A.: The formation ofN-acetyl-β-d-hexosaminidase is repressed by glucose inPenicillium chrysogenum.J. Basic Microbiol.33, 259–267 (1993).CrossRefGoogle Scholar
  32. Pusztahelyi T., Pócsi I., Kozma J., Szentirmai A.: Aging ofPenicillium chrysogenum cultures under carbon starvation—I. Morphological changes and secondary metabolite production.Biotechnol. Appl. Biochem.25, 81–86 (1997).Google Scholar
  33. Ramos F.R., López-Nieto M.J., Martín J.F.: Isopenicillin N synthase ofPenicillium chrysogenum, an enzyme that converts δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine to isopenicillin N.Antimicrob. Agents Chemother.27, 380–387 (1985).PubMedGoogle Scholar
  34. Sigler K., Chaloupka J., Brozmanová J., Stadler N., Höfer M.: Oxidative stress in microorganisms—I. Microbialvs. higher cells—damage and defenses in relation to cell aging and death.Folia Microbiol.44, 587–624 (1999).CrossRefGoogle Scholar
  35. White S., Berry D.R., McNeil B.: Effect of phenylacetic acid feeding on the process of cellular autolysis in submerged batch cultures ofPenicillium chrysogenum.J. Biotechnol.75, 173–185 (1999).PubMedCrossRefGoogle Scholar
  36. Wiebe C., Winkelmann G.: Kinetic studies on the specificity of chelate-iron uptake inAspergillus.J. Bacteriol.123, 837–842 (1975).PubMedGoogle Scholar
  37. Winkelmann G.: Kinetics energetics, and mechanisms of siderophore iron transport in fungi, pp. 219–239 in L.L. Barton, B.C. Hemming (Eds):Iron Chelation in Plants and Soil Microorganisms. Academic Press, San Diego 1993.Google Scholar
  38. Winkelmann G., Drechsel H.: Microbial siderophores, pp. 200–246 in H.-J. Rehn, G. Reed (Eds).Biotechnology, Vol. 7. VCH Press, Weinheim (Germany) 1997.Google Scholar

Copyright information

© Folia Microbiologica 2001

Authors and Affiliations

  • É. Leiter
    • 1
  • T. Emri
    • 1
  • G. Gyémánt
    • 2
  • I. Nagy
    • 3
  • Imre Pócsi
    • 1
  • G. Winkelmann
    • 4
  • István Pócsi
    • 1
  1. 1.Department of Microbiology and Biotechnology, Faculty of ScienceUniversity of DebrecenDebrecenHungary
  2. 2.Department of Biochemistry, Faculty of ScienceUniversity of DebrecenDebrecenHungary
  3. 3.Department of Inorganic and Analytical Chemistry, Faculty of ScienceUniversity of DebrecenDebrecenHungary
  4. 4.Institute of Microbiology and BiotechnologyUniversity of TübingenTübingenGermany

Personalised recommendations