Folia Microbiologica

, Volume 19, Issue 4, pp 249–256 | Cite as

Studies on methanol-oxidizing yeasts

I. Isolation and growth studies
  • O. Volfová
  • P. Pilát


A series of yeast strains utilizing methanol as the only source of carbon and energy were isolated both from soil and waste waters. Growth of the yeasts was studied in a mineral medium with yeast extract at 30°C. Growth parameters, Qo 2 and composition of biomass were studied in the strain 11Bh producing in shaken flasks highest yields of biomass. The biomass was found to contain 44% of crude proteins, 2% esterified fatty acids, 3% non-esterified fatty acids, 6% RNA and 0.25% DNA. Amino acid analysis revealed a high content of essential amino acids, lysine, leucine, valine and threonine in particular.


Butanol Yeast Strain Essential Amino Acid Mineral Medium Pentanol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asthana H., Humphrey A. E., Moritz V.: Growth of yeast on methanol as the sole carbon substrate.Biotechnol. Bioeng. 8, 923 (1971).CrossRefGoogle Scholar
  2. Bligh E. G., Dyer W. I.: A rapid method of total lipid extraction and purification.Can. J. Biochem. Physiol. 37 911 (1959).PubMedGoogle Scholar
  3. Ceriotti G.: A microchemical determination of desoxyribonucleic acid.J. Biol. Chem. 198, 297 (1952).PubMedGoogle Scholar
  4. Cooney C. L., Levine D. W.: Microbial utilization of methanol.Advan. Appl. Microbiol. 15, 337 (1972).Google Scholar
  5. Dworkin M., Foster J. W.: Studies onPseudomonas methanica (Söhngen) nov. comb.J. Bacteriol. 72, 646 (1956).PubMedGoogle Scholar
  6. Hazeu W., deBruyn J. C., Bos P.: Methanol assimilation by yeasts.Arch. Mikrobiol. 87, 185 (1972).PubMedCrossRefGoogle Scholar
  7. Lowry O. H., Rosebrough N. J., Farr N. J., Randall R. J.: Protein measurement with the folin phenol reagent.J. Biol. Chem. 193, 265 (1951).PubMedGoogle Scholar
  8. Novák M.: Colorimetric ultramicro method for the determination of free fatty acids.J. Lipid Res. 6, 431 (1965).PubMedGoogle Scholar
  9. Ogata K., Nishikawa H., Ohsugi M.: A yeast capable of utilizing methanol.Agr. Biol. Chem. 33, 1519 (1969).Google Scholar
  10. Ogata, K., Nishikawa H., Ohsugi M., Tochikura T.: Studies on the production of yeast. II. The cultura conditions of methanol assimilating yeast,Kloeckera sp. No. 2201.J. Ferment. Technol. 48, 470 (1970).Google Scholar
  11. Oki T., Kouno K., Kitai A., Ozaki A.: New yeasts capable of assimilating methanol.J. Gen. Appl. Microbiol. 18, 295 (1972).CrossRefGoogle Scholar
  12. Sahm H., Wagner F.: Mikrobielle Verwertung von Methanol. Isolierung und Charakterisierung der HefeCandida boidinii.Arch. Mikrobiol. 84, 29 (1972).PubMedCrossRefGoogle Scholar
  13. Smith G., Tannhauser S. J.: A method for the determination of desoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissues.J. Biol. Chem. 161, 83 (1945).Google Scholar
  14. Tani Y., Miya T., Ogata K.: The microbial metabolism of methanol. Part II. Properties of crystalline alcohol oxidase fromKloeckera sp. No.2201.Agr. Biol. Chem. 36, 76 (1972).Google Scholar
  15. Volfová O., Pecka K.: Cultivation ofCandida lipolytica 4-1 on hydrocarbons. IV. Fatty acids formed during batch cultivation on model gas oil.Folia Microbiol 18, 286 (1973).CrossRefGoogle Scholar
  16. Wenke M. J., Wenke I., Šíp A.: The serial determination of lipids in organs using a special homogenizer. (In Russian).Čs. Fysiol. 6, 251 (1957).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1974

Authors and Affiliations

  • O. Volfová
    • 1
  • P. Pilát
    • 1
  1. 1.Department of Technical Microbiology, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations