Folia Microbiologica

, Volume 29, Issue 2, pp 108–114 | Cite as

Function of terminal acceptors in the biosynthesis of denitrification pathway components inParacoccus denitrificans

  • I. Kučera
  • P. Boublíková
  • V. Dadák


Limited aeration of cell suspension in growth medium was used to study the kinetics of formation of nitrite reductase and nitrous-oxide reductase and their physiological electron donor, cytochromec-550, during the anaerobic adaptation ofParacoccus denitrificans. The crucial step in the regulation of synthesis of these components is the repressive effect of oxygen while nitrogenous acceptors (NO3 , NO2 , N2O) probably play no role as inducers. The time course of the enzyme activites was analogous (after a lag phase a sharp increase with a maximum after 3 h) and differed from the kinetics of synthesis of cytochromec-550 (gradual rise throughout the 8-h experiment).


Nitrite Nitrous Oxide Nitrate Reductase Nitrite Reductase Paracoccus Denitrificans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alefounder P.R., Ferguson S.J.: The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase by oxygen inParacoccus denitrificans.Biochem.J. 192, 231 (1980).PubMedGoogle Scholar
  2. Alefounder P.R., Ferguson S.J.: Electron transport-linked nitrous-oxide synthesis and reduction byParacoccus denitrificans monitored with an electrode.Biochem.Biophys.Res. Commun. 104, 1149 (1982).PubMedCrossRefGoogle Scholar
  3. Boogerd F.C., Van Verseveld H.W., Stouthamer A.H.: Respiration driven proton translocation with nitrite and nitrous oxide inParacoccus denitrificans.Biochim.Biophys.Acta 638 181 (1981).PubMedCrossRefGoogle Scholar
  4. Calder K., Burke K.A., Lascelles J.: Induction of nitrate reductase and membrane cytochromes in wild type and chlorate-resistantParacoccus denitrificans.Arch.Microbiol 126, 149 (1980).PubMedCrossRefGoogle Scholar
  5. Cole J.A.: Microbial gas metabolism, p. 7 inAdvances in Microbial Physiology, Vol. 14 (A.H. Rose, D.W. Tempest, eds.). Academic Press, London-New York-San Francisco 1976.Google Scholar
  6. Ferguson S.J.: Aspects of the control and organization of bacterial electron transport.Biochem. Soc.Trans. 10, 198 (1982).PubMedGoogle Scholar
  7. Forget P.: Les nitrate-reductase bacteriennes. Solubilisation, purification et propriétes de l’enzyme A deMicrococcus denitrificans.Eur.J.Biochem. 18, 442 (1971).PubMedCrossRefGoogle Scholar
  8. John P., Whatley, F.R.: The bioenergetics ofParacoccus denitrificans.Biochim.Biophys.Acta 463, 129 (1977).PubMedGoogle Scholar
  9. Kučera I., Dadák V., Dobrý, R.: The distribution of redox equivalents in the anaerobic respiratory chain ofParacoccus denitrificans.Eur.J.Biochem. 130 359 (1983a).PubMedCrossRefGoogle Scholar
  10. Kučera I., Laučík J., Dadák V.: The function of cytoplasmatic membrane ofParacoccus denitrificans in controlling the rate of reduction of terminal acceptors.Eur.J.Biochem.,136, 135 (1983b).PubMedCrossRefGoogle Scholar
  11. Lam Y., Nicholas D.J.D.: Aerobic and anaerobic respiration inMicrococcus denitrificans.Biochim.Biophys.Acta 172, 450 (1969).PubMedCrossRefGoogle Scholar
  12. Macholán L., Londýn P., Fišer J.: Continuous determination of phenol, vitamin C, jysine and glucose in flowing solutions by means of an amperometric enzyme electrode.Coll.Czech.Chem. Commun. 46, 2871 (1981).Google Scholar
  13. Mejer E.M., Van der Zwaan J.W., Stouthamer A.H.: Location of the proton-consuming site in nitrite reduction and stechiometries for proton pumping in anaerobically grownParacoccus denitrificans.FEMS Microbiol.Lett. 5, 369 (1979).CrossRefGoogle Scholar
  14. Porra R.J., Lascelles J.: Haemoproteins and haem synthesis in facultative photosynthetic and denitrifying bacteria.Biochem.J. 94, 120 (1965).PubMedGoogle Scholar
  15. Šaparčík K., Dadák V.: Isolation and characterization of cytochromec fromParacoccus denitrificans. (In Czech),Biologia 36, 1089 (1981).Google Scholar
  16. Sapshead L.M., Wimpenny J.W.T.: The influence of oxygen and nitrate on the formation of the cytochtome pigments of the aerobic and anaerobic respiratory chain ofMicrococcus denitrificans.Biochim.Biophys.Acta 267, 388 (1972).PubMedCrossRefGoogle Scholar
  17. Scholes P.B. Smith L.: Composition and properties of the membrane bound respiratory chain system ofMicrococcus denitrificans.Biochim.Biophys.Acta 153, 363 (1968).PubMedCrossRefGoogle Scholar
  18. Snell F.D., Snell C.T.:Colorimetric Methods of Analysis, p. 804. Van Nostrand, New York 1949.Google Scholar
  19. Stouthamer A.H.: Bioenergetics studies onParacoccus denitrificans.Trends Biochem.Sci. 5, 164 (1980).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1984

Authors and Affiliations

  • I. Kučera
    • 1
  • P. Boublíková
    • 1
  • V. Dadák
    • 1
  1. 1.Department of Biochemistry, Faculty of SciencesJ.E. Purkyně UniversityBrnoCzechoslovakia

Personalised recommendations