Advertisement

Folia Microbiologica

, Volume 19, Issue 6, pp 498–506 | Cite as

The study of variability and strain selection inStreptomyces atroolivaceus

II. Chromatographic analysis of mithramycin-producing and non-producing strains
  • K. Stajner
  • M. Blumauerová
  • D. A. S. Callieri
  • Z. Vaněk
Article

Abstract

Thin-layer chromatography of extracts of submerged cultures ofStreptomyces atroolivaceus yielded, apart from mithramycin and chromocyclomycin, eleven biologically inactive metabolites. According to the spectrum of these products, the fifteen tested strains were divided into five metabolic groups. The experimental results provided a basis for discussing the relationship between the biosynthesis of mithramycin, chromocyclomycin and other metabolites.

Keywords

Streptomyces Submerged Culture Mithramycin Metabolic Group Mycelial Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alston R. E.: The genetics of phenolic compounds, p. 171, in J. B. Harborne (Ed.):Biochemistry of Phenolic Compounds, Academic Press, London and New York 1964.Google Scholar
  2. Bakhaeva G. P., Berlin Yu. A., Boldyreva E. F., Chuprunova O. A., Kolosov M. N., Soifer V. S., Vasilyeva T. E., Yartseva I. V.: The structure of aureolic acid (mithramycin).Tetrahedron Letters 3595 (1968).Google Scholar
  3. Berlin Yu. A., Kiseleva O. A., Kolosov M. N., Shemyakin M. M., Soifer V. S., Vasina I. V., Yartseva I. V., Kuznetsov V. D.: Aureolic acid group of anti-tumor antibiotics.Nature218, 193 (1968a).PubMedCrossRefGoogle Scholar
  4. Berlin Yu. A.,Kolosov M. N., Vasina I. V., Yartseva I. V.: The structure of chromocyclomycin.Chem. Commun. 762 (1968b).Google Scholar
  5. Berlin Yu. A., Kolosov M. N., Severtsova I. V.: Olivomycin and related antibiotics. XXX. The structure of chromocycline. (In Russian)Khim. priorod. Soedinenii 524 (1973a).Google Scholar
  6. Berlin Yu. A., Kolosov M. N., Yartseva I. V.: Olivomycin and related antibiotics. XXXII. The structure of chromocyclomycin. (In Russian)Khim. prirod. Soedinenii 539 (1973b).Google Scholar
  7. Blumauerová M., Callieri D. A. S., Stajner K., Vaněk Z.: The study of variability and strain selection inStreptomyces atroolivaceus. I. UV light and nitrous acid as the effective agents in the improvement of mithramycin production.Folia Microbiol.,19, 133 (1974).CrossRefGoogle Scholar
  8. Blumauerová M., Mraček M., Vondráčková J., Podojil M., Hošťálek Z., Vaněk Z.: Regulation of biosynthesis of secondary metabolites. IX. The biosynthetic activity of blocked mutants ofStreptomyces aureofaciens.Folia Microbiol.14, 215 (1969a).CrossRefGoogle Scholar
  9. Blumauerová M., Hošťálek Z., Mraček M., Podojil M., Vaněk Z.: Regulation of biosynthesis of secondary metabolites. X. Metabolic complementation of blocked mutants ofStreptomyces aureofaciens.Folia Microbiol.14, 226 (1969b).CrossRefGoogle Scholar
  10. Delić V., Pigac J., Sermonti G.: Detection and study of cosynthesis of tetracycline antibiotics by an agar method.J. Gen. Microbiol.55, 103 (1969).PubMedGoogle Scholar
  11. Doležilová L., Spížek J., Vondráček M., Palečková F., Vaněk Z.: Cycloheximide-producing and fungicidin-producing mutants ofStreptomyces noursei.J. Gen. Microbiol.39, 1 (1965).Google Scholar
  12. Gauze G. F., Maksimova T. S., Ukholina R. S., Brazhnikova M. G., Krugliak E. B.:Act. atroolivaceus, a new mithramycin-producing organism. (In Russian)Antibiotiki12, 1059 (1967).PubMedGoogle Scholar
  13. Gordon J. E.: Adsorption chromatography of low-melting quaternary ammonium salts.J. Chromatog.20, 38 (1965).CrossRefGoogle Scholar
  14. Grundy W. E., Goldstein A. W., Rickher C. J., Hanes M. E., Warren H. B., Sylvester J. C.: Aureolic acid, a new antibiotic. I. Microbiologic studies.Antibiotics & Chemother.3, 1215 (1953).Google Scholar
  15. Harborne J. B.: Phenolic glycosides and their natural distribution, p. 129, in J. B. Harborne (Ed.):Biochemistry of Phenolic Compounds, Academic Press, London and New York 1964.Google Scholar
  16. Kusch A. A., Fedoseeva G. E., Kiseleva O. A., Zelenin A. V.: Comparative analysis of mechanisms of biological action of antibiotics from the group of aureolic acid and their derivatives. (In Russian)Antibiotiki17, 504 (1972).PubMedGoogle Scholar
  17. Malik V. S., Vining L. C.: Effect of chloramphenicol on its biosynthesis byStreptomyces species 3022a.Can. J. Microbiol.18, 137 (1972).PubMedCrossRefGoogle Scholar
  18. Miyamoto M., Morita K., Kawamatsu Y., Noguchi S., Marumoto R., Tanaka K., Tatsuoka S., Nakanishi K., Nakadaira Y., Bhacca N. S.: Chromomycinone, the aglycone of chromomycin A3.Tetrahedron Letters 2355 (1964).Google Scholar
  19. Miyamoto M., Morita K., Kawamatsu Y., Noguchi S., Marumoto R., Sasai M., Nohara A., Nakadaira Y., Lin Y. Y., Nakanishi K.: The reactions of chromomycinone and derivatives.Tetrahedron22, 2761 (1966).CrossRefGoogle Scholar
  20. Philip J. E., Schenck J. R.: Aureolic acid, a new antibiotic. II. Isolation and properties.Antibiotics & Chemother.3, 1218 (1953).Google Scholar
  21. Rao K. V., Cullen W. P., Sobin B. A.: A new antibiotic with antitumor properties.Antibiotics & Chemother.12, 182 (1962).Google Scholar
  22. Sensi P., Greco A. M., Pagani H.: Isolation and properties of a new antibiotic, L.A.7017.Antibiotics & Chemother.8, 241 (1958).Google Scholar
  23. Vaněk Z., Cudlín J., Blumauerová M., Hošťálek Z.: How many genes are required for the synthesis of chlortetracycline?Folia Microbiol.16, 225 (1971).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1974

Authors and Affiliations

  • K. Stajner
    • 1
  • M. Blumauerová
    • 1
  • D. A. S. Callieri
    • 1
  • Z. Vaněk
    • 1
  1. 1.Department of Biogenesis of Natural Substances, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations