The Botanical Review

, Volume 11, Issue 4, pp 181–230 | Cite as

Plant growth relations on saline and alkali soils

  • O. C. Magistad


Soil Solution Osmotic Pressure Botanical Review Sodium Carbonate Soluble Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Aarnio, B. Salt soils (alum soils) of the humid climate of Finland. Int. Mitt. Bodenk.12: 180–185. 1922; Exp. Sta. Rec.50: 15.Google Scholar
  2. 2.
    Ahi, S. M. andW. L. Powers. Salt tolerance of plants at various temperatures. Pl. Physiol.13: 767–789. 1938.Google Scholar
  3. 3.
    Alben, A. O. Reactions of electro dialyzed humus and bentonite and application of the method. Jour. Am. Soc. Agron.22: 311–326. 1930.Google Scholar
  4. 4.
    Albrecht, W. A. Calcium and hydrogen ion concentration in the growth and inoculation of soy beans. Jour. Am. Soc. Agron.24: 793–806. 1932.Google Scholar
  5. 5.
    ————— Absorbed ions on the colloidal complex and plant nutrition. Proc. Soil Sci. Soc. Am.5: 8–16. 1940.Google Scholar
  6. 6.
    ————— Plants and the exchangeable calcium of the soil. Am. Jour. Bot.28: 394–402. 1941.CrossRefGoogle Scholar
  7. 7.
    ————— Soil acidity. A nutrient deficiency. Sci. Mon.58: 237–238. 1944.Google Scholar
  8. 8.
    Aldrich, D. al. Hydration control of montmorillonite as required for its identification and estimation by X-ray diffraction methods. Soil Sci.57: 215–231. 1944.CrossRefGoogle Scholar
  9. 9.
    Alexander, L. al. Minerals present in soil colloids. II. Estimation in representative soils. Soil Sci.48: 273–279. 1939.CrossRefGoogle Scholar
  10. 10.
    Andrianov, K. S. The nitrate solonchaks of the Isfarin region of the Tadzhik S. S. R. Khim. Sotsial. Zemled. No.10: 63–67. 1936; Chem. Abs.31: 6792.Google Scholar
  11. 11.
    Antipov-Karataev, I. N. Über die Meliorierung der Alkaliböden unter Irrigationsbedingungen in der Ud. S. S. R. Trans. 6th Comm. Int. Soc. Soil Sci. Vol. B: 474–481. (Zurich). 1937.Google Scholar
  12. 12.
    —————et al. The laws governing the interaction of clays and soils with electrolytes. Trans. Dokuchaev Soil Inst. (U.S.S.R.)20: 5–32. [English summary] 1939; Chem. Abs.34: 4845.Google Scholar
  13. 13.
    Arnon, D. al. Hydrogen ion concentration in relation to absorption of inorganic nutrients by higher plants. Pl. Physiol.17: 515–524. 1942.Google Scholar
  14. 14.
    Asghar, A. al. Soil deterioration in the canal-irrigated areas of the Punjab. Part II. Relation between degree of alkalisation and dispersion coefficient in deteriorated soils. Punjab Irrig. Res. Inst., Res. Publ.4(8). 1935.Google Scholar
  15. 15.
    Ayers, A. al. The interrelationships of salt concentration and soil moisture content upon the growth of beans. Jour. Am. Soc. Agron.35: 796–810. 1943.Google Scholar
  16. 16.
    Bakhuyzen, H. L. van de Sande. Studies on wheat grown under constant conditions. 1937.Google Scholar
  17. 17.
    Barnes, J. H. andB. Ali. Alkali soils: Some biochemical factors in reclamation. Agr. Jour. India12: 368–389. 1917.Google Scholar
  18. 18.
    Basslavskaya, S.S. Influence of the chloride ion on the content of carbohydrates in potato leaves. Pl. Physiol.11: 863–871. 1936.Google Scholar
  19. 19.
    —————. Influence of the chloride ion on the content of chlorophyll in the leaves of potatoes. Pl. Physiol.11: 149–157. 1936.Google Scholar
  20. 20.
    Blodgett, E. C. Chlorosis of horticultural crops in Idaho. Northwest Fert. Conf. Hort. Pullman, Washington, January 15–16, 1943.Google Scholar
  21. 21.
    Bodman, G. B. andP. R. Day. Freezing points of a group of California soils and their extracted clays. Soil Sci.55: 225–246. 1943.CrossRefGoogle Scholar
  22. 22.
    Boynton, D. andO. C. Compton. Effect of oxygen pressure in aerated nutrient solution on production of new roots and on growth of roots and tops of fruit trees. Proc. Am. Soc. Hort. Sci.42: 53–58. 1943.Google Scholar
  23. 23.
    ————— and ————— Normal seasonal changes of oxygen and carbon dioxide percentages in gas from the larger pores of three orchard subsoils. Soil Sci.57: 107–117. 1944.CrossRefGoogle Scholar
  24. 24.
    —————et al. Are there different critical oxygen concentrations for the different phases of root activity? Science88: 569–570. 1938.PubMedCrossRefGoogle Scholar
  25. 25.
    —————. Seasonal variation of oxygen and carbon dioxide in three different orchard soils during 1938 and its possible significance. Proc. Am. Soc. Hort. Sci.36: 1–6. 1938.Google Scholar
  26. 26.
    Bradleyet al. The behavior of montmorillonite upon wetting. Zeit. Kristal.97: 216–222. 1937.Google Scholar
  27. 27.
    Breazeale, J. F. Alkali tolerance of plants considered as a phenomenon of adaptation. Ariz. Agr. Exp. Sta., Tech. Bul.11. 1926.Google Scholar
  28. 28.
    -----. A study of the toxicity of salines that occur in black alkali soils. Ariz. Agr. Exp. Sta., Tech. Bul. 14. 1927.Google Scholar
  29. 29.
    -----and W. T. McGeorge. Sodium hydroxide rather than sodium carbonate the source of alkalinity in black alkali soils. Ariz. Agr. Exp. Sta., Bul. 13. 1926.Google Scholar
  30. 30.
    -----and -----. Nutritional disorders in alkali soils as caused by deficiency of carbon dioxide. Ariz. Agr. Exp. Sta., Tech. Bul. 41. 1932.Google Scholar
  31. 31.
    Brenchley, Winifred E. The effect of the concentration of the nutrient solution upon wheat cultures. Ann. Bot.30: 77–91. 1916.Google Scholar
  32. 32.
    Briggs, L. J. andH. L. Shantz. The relative wilting coefficient for different plants. Bot. Gaz.53: 229–235. 1912.CrossRefGoogle Scholar
  33. 33.
    -----and -----. The wilting coefficient for different plants and its indirect determination. U. S. Dept. Agr., Bur. Plant Ind., Bul. 230. 1912.Google Scholar
  34. 34.
    Buehrer, T. F. The physiocochemical relationships of soil phosphates. Ariz. Agr. Exp. Sta., Bul. 42. 1932.Google Scholar
  35. 35.
    Buffum, B. C. Alkali: Some observations and experiments. Wy. Agr. Exp. Sta., Bul. 29. 1896.Google Scholar
  36. 36.
    -----. Alkali studies. III.In Wy. Agr. Exp. Sta., Ann. Rep. pp. 1–40. 1899.Google Scholar
  37. 37.
    Burgess, P. S. Alkali soil studies and methods of reclamation. Ariz. Agr. Exp. Sta., Bul. 123. 1928.Google Scholar
  38. 38.
    Caldwell, J. S. The relation of environmental conditions to the phenomenon of permanent wilting in plants. Physiol. Res.1: 1–56. 1913.Google Scholar
  39. 39.
    Caster, A. al. The micro-biological oxidation of ammonia in desert soils. I. Threshold pH value for nitratification. Ariz. Agr. Exp. Sta., Tech. Bul. 96. 1942.Google Scholar
  40. 40.
    Collander, R. Permeabilitäts-studien an Characeen. III. Die Aufnahme und Abgabe von Kationen. Protoplasma33: 215–257. 1939.CrossRefGoogle Scholar
  41. 41.
    ————— Selective absorption of cations by higher plants. Pl. Physiol.16: 691–720. 1941.Google Scholar
  42. 42.
    Conner, S. D. Excess soluble salts in humid soils. Jour. Am. Soc. Agron.9: 297–301. 1917.Google Scholar
  43. 43.
    Davis, R. O. E. and H. Bryan. The electrical bridge for the determination of soluble salts in soils. U. S. Dept. Agr., Bur. Soils, Bul. 61. 1910.Google Scholar
  44. 44.
    Day, D. Some effects of calcium deficiency onPisum sativum. Pl. Physiol.4: 493–506. 1929.Google Scholar
  45. 45.
    Day, P. R. The moisture potentials of soils. Soil Sci.54: 391–400. 1942.CrossRefGoogle Scholar
  46. 46.
    Demidenko, T. T. andN. P. Martynov. Effect of osmotic pressure of the soil solution on yield and composition of sugar beet. Comp. Rend. Acad. Sci. (U.S.S.R.)15: 371–374. 1937; Chem. Abs.31: 8785.Google Scholar
  47. 47.
    Division of Agricultural Chemistry. Rep. Cal. Agr. Exp. Sta. pp. 24, 27. 1921.Google Scholar
  48. 48.
    Dorsey, C. W. Alkali soils of the United States. A review of literature and summary of present information. U. S. Dept. Agr., Bur. Soils, Bul. 35. 1906.Google Scholar
  49. 49.
    Doughty, J. L. andH. E. Stalwick. The effect of alkali salts on plant growth. Sci. Agr.20: 272–276. 1940.Google Scholar
  50. 50.
    Drabble, E. andHilda Drabble. The relation between the osmotic strength of cell sap in plants and their physical environment. Biochem. Jour.2: 117–132. 1907.Google Scholar
  51. 51.
    Dunkle, E. C. andF. G. Merkle. The conductivity of soil extracts in relation to germination and growth of certain plants. Soil Sci. Soc. Am., Proc.8: 185–188. 1943.Google Scholar
  52. 52.
    Eaton, F. M. The water requirement and cell sap concentration of Australian salt bush and wheat as related to the salinity of the soil. Am. Jour. Bot.14: 212–226. 1927.CrossRefGoogle Scholar
  53. 54.
    —————. Salinity of irrigation water and injury to plants. Cal. Citrog.20: 302, 322–326, 334, 362–365. 1935.Google Scholar
  54. 55.
    —————. Water uptake and root growth as influenced by inequalities in the concentration of substrate. Pl. Physiol.16: 545–564. 1941.Google Scholar
  55. 56.
    —————. Toxicity and accumulation of chloride and sulfate salts in plants. Jour. Agr. Res.64: 357–399. 1942.Google Scholar
  56. 57.
    —————. Absorbed sodium in soils as affected by the soil water ratio. Soil Sci.40: 237–247. 1935.CrossRefGoogle Scholar
  57. 58.
    Edlefsen andA. B. C. Anderson. Thermodynamics of soil moisture. Hilgardia15: 31–298. 1943.Google Scholar
  58. 59.
    Edwards, T. I. Relations of germinating soybeans to temperature and length of incubation time. Pl. Physiol.9: 1–30. 1934.Google Scholar
  59. 60.
    Ellis, J. H. andO. G. Caldwell. Magnesium clay “solonetz”. Trans. Third Int. Cong. Soil Sci. Vol.1: 348–350. 1935.Google Scholar
  60. 61.
    Fireman, M. andG. B. Bodman. The effect of saline irrigation water upon the permeability and base status of soils. Soil Sci. Soc. Am., Proc.4: 71–77. 1939.Google Scholar
  61. 62.
    ----- andO. C. Magistad. [Unpublished].Google Scholar
  62. 63.
    Fitting, H. Die Wasserversorgung und die osmotische Druckverhältnisse der Wüstenpflanzen. Ztsch. Bot.3: 209–275. 1911.Google Scholar
  63. 64.
    Fitts, J. al. “Slick spots” in Nebraska. Jour. Am. Soc. Agron.31: 823–831. 1939.Google Scholar
  64. 65.
    Fraps, G. S. The effect of salt water on rice. Texas Agr. Exp. Sta., Bul. 122. 1909.Google Scholar
  65. 66.
    Furr, J. R. andW. W. Aldrich. Oxygen and carbon dioxide changes in the soil atmosphere of an irrigated date garden on calcareous very fine sandy loam. Proc. Am. Soc. Hort. Sci.42: 46–52. 1943.Google Scholar
  66. 67.
    —————. Relation of moisture supply to stomatal behavior of the apple. Proc. Am. Soc. Hort. Sci.28: 547–551. 1932.Google Scholar
  67. 68.
    —————. Preliminary report on relation of soil moisture to stomatal activity and fruit growth of apples. Proc. Am. Soc. Hort. Sci.27: 212–218. 1931.Google Scholar
  68. 69.
    Gangulee, N. The alkali soils of India. Actes IV Int. Conf. Pedologie, 2nd Comm: 643–655. 1924.Google Scholar
  69. 70.
    Gapon, E. N. On the theory of exchange adsorption in soils. Jour. Gen. Chem. (U.S.S.R.)3: 144–163. 1933.Google Scholar
  70. 71.
    Gardner, R. Some soil properties related to the sodium salt problem in irrigated soils. U. S. Dept. Agr., Circ. [In press].Google Scholar
  71. 72.
    -----et al. Slick spots in western Colorado soils. Col. Agr. Exp. Sta., Bul. 20. 1937.Google Scholar
  72. 73.
    Gauch, H. G. andF. M. Eaton. Effect of saline substrate on hourly levels of carbohydrate and inorganic constituents of barley plants. Pl. Physiol.17: 347–365. 1942.Google Scholar
  73. 74.
    —————. Growth of strawberry clover varieties and of alfalfa and ladino clover as affected by salt. Jour. Am. Soc. Agron.35: 871–880. 1943.Google Scholar
  74. 75.
    —————. The influence of saline substrates upon the absorption of nutrients by bean plants. Am. Soc. Hort. Sci., Proc.41: 365–369. 1942.Google Scholar
  75. 76.
    ————— and —————. Effects of high salt concentrations on the growth of bean plants. Bot. Gaz.105: 379–387. 1944.CrossRefGoogle Scholar
  76. 77.
    -----and -----. The effect of high concentrations of sodium, calcium, chloride, and sulfate on ionic absorption by bean plants. Soil Sci. [In press].Google Scholar
  77. 78.
    Gedroix, K. K. Colloidal chemistry as related to soil science. Zhurnal Opitnoi Agronomii13: 363–412. 1912. [Trans. by Waksman].Google Scholar
  78. 79.
    —————. The absorping capacity of the soil and the zeolitic basis of the soil. Zhurnal Opitnoi Agronomii17: 472–527. 1916. [Trans. by Waksman].Google Scholar
  79. 80.
    —————. Saline soils and their improvement. Zhurnal Opitnoi Agronomii18: 122–140. 1917. [Trans. by Waksman].Google Scholar
  80. 81.
    -----. On the absorptive power of soils. Ed. Com. People’s Com. Agr., 1922. [Trans. by Waksman].Google Scholar
  81. 82.
    -----. Soil absorbing complex and the absorbed soil cations as a basis of genetic soil classification. People’s Com. Agr. Nossov Agr. Exp. Sta., Agrochem. Div., Paper No. 38. 1925. [Trans. by Waksman].Google Scholar
  82. 83.
    -----. Der adsorbierende Bodenkomplex. [ H. Kuron]. 1929.Google Scholar
  83. 84.
    —————. Exchangeable cations of the soil and plant: I. Relation of plant to certain cations fully saturating the soil exchange capacity. Soil Sci.32: 51–63. 1931.Google Scholar
  84. 86.
    Gehring, al. Untersuchungen ueber die Feststellung des Kalkbedurfnisses Braunschweighischer Böden. Trans. Sec. Comm. Int. Soc. Soil. Sci. A: 153–169. 1926.Google Scholar
  85. 87.
    Gile, P. L. Lime magnesia ratio as influenced by concentration. Porto Rico Agr. Exp. Sta., Bul. 12. 1912.Google Scholar
  86. 88.
    Glasstone, Violette C. Passage of air through plants and its relation to measurement of respiration and assimilation. Am. Jour. Bot.29: 156–159. 1944.CrossRefGoogle Scholar
  87. 89.
    Glinka, K. Die Typen der Bodenbilding. 1914.Google Scholar
  88. 90.
    -----. The great soil groups of the world and their development. [Trans. by C. F. Marbut]. 1927.Google Scholar
  89. 91.
    Gracanin, M. Die Koncentration der Nährlösung als Faktor des Wurzelwachstums. Lab. Pl. Nutr., Univ. Zagreb. 1935.Google Scholar
  90. 92.
    Graham, Ellis R. Calcium transfer from mineral to plant through colloidal clay. Soil Sci.51: 65–69. 1941.CrossRefGoogle Scholar
  91. 93.
    Greaves, J. E. andYeppa Lund. The role of osmotic pressure in the toxicity of soluble salts. Soil Sci.12: 163–181. 1921.CrossRefGoogle Scholar
  92. 94.
    Greene, H. andO. W. Snow. The effect of irrigation and dry fallow on a heavy, base saturated soil. Third Int. Cong. Soil Sci. Vol.1: 21–24. 1935.Google Scholar
  93. 95.
    Grim, R. E. Modern concepts of clay materials. Jour. Geol.50: 225–275. 1942.Google Scholar
  94. 96.
    Guest, P. L. Root-contact phenomena in relation to iron nutrition and growth of citrus. Proc. Am. Soc. Hort. Sci.44: 43–48. 1944.Google Scholar
  95. 97.
    Hansteen, B. Über das Verhalten der Kulturpflanzen zu den Bodensalzen. I, II. Jahr. Wiss. Bot.47: 289–376. 1910.Google Scholar
  96. 98.
    Harris, A. E. Effect of replaceable sodium on soil permeability. Soil Sci.32: 435–446. 1931.CrossRefGoogle Scholar
  97. 99.
    Harris, F. S. Soil alkali. 1920.Google Scholar
  98. 99a.
    —————. Effect of alkali salts in soils on the germination and growth of crops. Jour. Agr. Res.5: 1–53. 1915.Google Scholar
  99. 99b.
    -----. Soil alkali studies. Quantities of alkali salts which prohibit the growth of crops in certain Utah soils. Utah Agr. Exp. Sta., Bul. 145. 1916.Google Scholar
  100. 99c.
    -----and D. W. Pittman. Relative resistance of various crops to alkali. Utah Agr. Exp. Sta., Bul. 168. 1919.Google Scholar
  101. 100.
    Harris, J. A. The relationship between the concentration of the soil solution and the physicochemical properties of the leaf-tissue fluids of Egyptian and Upland cotton. Jour. Agr. Res.32: 605–647. 1926.Google Scholar
  102. 101.
    —————et al. The osmotic concentration, specific electrical conductivity, and chloride content of the tissue fluids of the indicator plants of Tooele Valley, Utah. Jour. Agr. Res.27: 893–924. 1924.Google Scholar
  103. 102.
    —————et al. The leaf-tissue fluids of Egyptian cottons. Jour. Agr. Res.31: 1027–1033. 1925.Google Scholar
  104. 103.
    —————et al. Sulphate content of the leaf-tissue fluids of Egyptian and Upland cotton. Jour. Agr. Res.31: 653–661. 1925.Google Scholar
  105. 105.
    —————et al. On the osmotic pressures of the juices of desert plants. Science41: 656–658. 1915.PubMedCrossRefGoogle Scholar
  106. 106.
    —————et al. The cryoscopic constants of expressed vegetable saps as related to local environmental conditions in Arizona deserts. Physiol. Res.2: 1–49. 1915.Google Scholar
  107. 107.
    —————. Further studies on the relationship between the concentration of the soil solution and the physicochemical properties of the leaf-tissue fluids of cotton. Jour. Agr. Res.41: 767–788. 1930.Google Scholar
  108. 108.
    Harrison, W. H. Soils and soil conditions. Sci. Reps. Agr. Res. Inst. (Pusa) 1917–18, 27–30.Google Scholar
  109. 108a.
    Harter, L. L. The variability of wheat varieties in resistance to toxic salts. U. S. Dept. Agr., Dept. Bul. 79. 1905.Google Scholar
  110. 109.
    Hayward, H. E. and R. Uhvits. [Unpublished work].Google Scholar
  111. 110.
    —————. Anatomical and physiological responses of the tomato to varying concentrations of sodium chloride, sodium sulfate, and nutrient solutions. Bot. Gaz.102: 437–462. 1941.CrossRefGoogle Scholar
  112. 111.
    ————— and —————. Vegetative responses of the Elberta peach on Lovell and Shalil root stocks to high chloride and sulfate solutions. Am. Soc. Hort. Sci., Proc.41: 149–155. 1942.Google Scholar
  113. 112.
    ————— and —————. Some effects of sodium salts on the growth of the tomato. Pl. Physiol.18: 556–569. 1943.Google Scholar
  114. 113.
    —————. Effect of osmotic concentration of substrate on the entry of water into corn roots. Bot. Gaz.105: 152–164. 1943.CrossRefGoogle Scholar
  115. 114.
    ————— and —————. The tolerance of flax to saline conditions, effect of sodium chloride, calcium chloride and sodium sulfate. Jour. Am. Soc. Agron.36: 287–300. 1944.Google Scholar
  116. 115.
    Headen, W. P. Deterioration in the quality of sugar beets due to nitrates formed in the soil. Col. Agr. Exp. Sta., Bul. 183. 1912.Google Scholar
  117. 116.
    Heller, V. al. Sand culture studies of the use of saline and alkaline waters in greenhouses. Pl. Physiol.15: 727–733. 1940.Google Scholar
  118. 117.
    Henckel, P. A. and S. S. Kolotova. On increasing the salt-resistance of plants by pre-sowing treatment. Izv. Akad. Nauk, U.S.S.R. Sci. Biol. 474–483. 1940.Google Scholar
  119. 118.
    Hendricks, S. Lattice structure of clay materials and some properties of clay. Jour. Geol.50: 276–290. 1942.Google Scholar
  120. 119.
    -----. [Personal communication relative to mineral analysis of saline and alkali soils. 1943.]Google Scholar
  121. 120.
    —————. Minerals present in soil colloids. I. Descriptions and methods for identification. Soil Sci.48: 257–272. 1939.CrossRefGoogle Scholar
  122. 121.
    —————. The results of X-ray and microscopical examinations of soil colloids. Soil Sci.29: 457–479. 1930.CrossRefGoogle Scholar
  123. 122.
    Hendrickson, A. H. and F. J. Veihmeyer. Irrigation experiments with peaches in California. Cal. Agr. Exp. Sta., Bul. 479. Part I. 1929.Google Scholar
  124. 123.
    ————— and —————. Irrigation experiments with grapes. Proc. Am. Soc. Hort. Sci.28: 151–157. 1931.Google Scholar
  125. 124.
    Hester, J. B. A study of some salt water flooded soils on the eastern shore of Virginia. Soil Sci.36: 427–434. 1933.CrossRefGoogle Scholar
  126. 124a.
    Hicks, G. H. The germination of seeds as affected by certain chemical fertilizers. U. S. Dept. Agr., Div. Bot., Bul. 24. 1900.Google Scholar
  127. 125.
    Hilgard, E. W. Alkali lands, irrigation and drainage in their mutual relations. Univ. Cal., Col. Agr. Rep., App. VII. 1886.Google Scholar
  128. 126.
    -----. Nature, value, and utilization of alkali lands. Cal. Agr. Exp. Sta., Bul. 128. 1900.Google Scholar
  129. 127.
    -----. Soils. 1906.Google Scholar
  130. 128.
    Hissink, D. J. Base exchange in soils. Trans. Faraday Soc.20: 551–566. 1924–25.CrossRefGoogle Scholar
  131. 129.
    ————— Beitrag zur Kenntnis der Adsorptionvorgänge im Boden. Methode zur Bestimmung der austauschfähigen oder adsorptive gebunden Basen im Böden und die Bedeutung dieser Basen für die Prozesse, die sich im Böden abspielen. Int. Mitt. Bodenk.12: 81–172. 1922.Google Scholar
  132. 130.
    —————. Method for measuring absorbed bases in soils and the importance of these bases in soil economy. Soil Sci.15: 269–276. 1923.CrossRefGoogle Scholar
  133. 131.
    —————. Der Sattigungszustand des Bodens. A. Mineralböden (Tonböden). Zeit. Pflanzenernähr. u. Dungung—Teil A.4: 137–158. 1925.Google Scholar
  134. 132.
    -----. The relation between the values pH, V and S (humus) of some humus soils. S (humus) and V of these soils with pH=7. The equivalent weight of the humus substance. Int. Soc. Soil Sci., Proc. Sec. Comm. A. 198–207. 1926.Google Scholar
  135. 133.
    —————. The reclamation of a part of the Zuyder Zee. Trans. Sixth Comm. Int. Soc. Soil Sci., Vol. A: 177–187. 1932.Google Scholar
  136. 134.
    -----. Die Salztonböden und die Alkalitonböden in den Niederlanden. Trans. Second Comm. Int. Soc. Soil Sci. Kjøbenhaven A. 185–189. 1933.Google Scholar
  137. 135.
    —————. Der Basenaustauch im Böden. Third Int. Cong. Soil Sci. Vol. 2: 60–74. 1935.Google Scholar
  138. 136.
    Hoagland, D. R. Relation of the concentration and reaction of the nutrient medium to the growth and absorption of the plant. Jour. Agr. Res.17: 73–117. 1919.Google Scholar
  139. 137.
    ————— Some aspects of the salt nutrition of higher plants. Bot. Rev.3: 307–334. 1937.CrossRefGoogle Scholar
  140. 138.
    ————— Salt accumulation in plant cells. Symp. Quant. Biol.8: 181–194. 1940.Google Scholar
  141. 139.
    -----. Lectures on the inorganic nutrition of plants. 1944.Google Scholar
  142. 140.
    —————. Hydrogen ion effects and the accumulation of salt by barley roots as influenced by metabolism. Am. Jour. Bot.27: 173–185. 1940.CrossRefGoogle Scholar
  143. 141.
    ————— and —————. Accumulation of salt and permeability in plant cells. Jour. Gen. Physiol.25: 865–880. 1942.CrossRefGoogle Scholar
  144. 142.
    —————. The intake and accumulation of electrolytes by plant cells. Protoplasma4: 610–626. 1929.CrossRefGoogle Scholar
  145. 143.
    —————. Nutrition of strawberry plant under controlled conditions. Am. Soc. Hort., Proc.30: 288–294. 1933.Google Scholar
  146. 143(a).
    —————. Effects of deficiencies of boron and certain other elements. Am. Soc. Hort., Proc.30: 288–294. 1933.Google Scholar
  147. 143(b).
    —————. Susceptibility of injury from sodium salts. Am. Soc. Hort., Proc.30: 288–294. 1933.Google Scholar
  148. 144.
    Horner, G. M. Relation of the degree of base saturation of a colloidal clay by calcium to the growth, nodulation and composition of soy beans. Missouri Agr. Exp. Sta., Res. Bul. 232. 1936.Google Scholar
  149. 145.
    Hunter, A. al. Calcium potassium ratios for alfalfa. Soil Sci.55: 61–72. 1943.Google Scholar
  150. 146.
    Iljin, V. Über die Austrocknungsfähigkeit des lebenden Protoplasmas der vegetativen Pflanzenzellen. Jahr. Wiss. Bot.66: 947–964. 1927.Google Scholar
  151. 147.
    Iljin, W. S. Der Einfluss des Welkens auf den Ab- und Aufbau der Stärke in der Pflanze. Planta10: 170–184. 1930.CrossRefGoogle Scholar
  152. 148.
    Ingalls, R. A. andJ. W. Shive. Relation of H-ion concentration of tissue fluids to distribution of iron in plants. Pl. Physiol.6: 103–125. 1931.Google Scholar
  153. 149.
    Itallie, Th. B. van. Cation equilibria in plants in relation to soil. Soil Sci.46: 175–186. 1938.CrossRefGoogle Scholar
  154. 150.
    Jacobs, M. H. Some aspects of cell permeability to weak electrolytes. Symp. Quant. Biol.8: 30–39. 1940.Google Scholar
  155. 151.
    Jenny, H. Kationen und anionen Umtausch an Permutitgrenzfläcken. Kolloid Chem. Beihefte23: 427–472. 1926.Google Scholar
  156. 152.
    —————. The influence of the degree of saturation of soil colloids on the nutrient intake by roots. Soil Sci.48: 443–459. 1939.Google Scholar
  157. 153.
    —————. Contact effects between plant roots and soil colloids. Proc. Nat. Acad. Sci.24: 384–392. 1938.PubMedCrossRefGoogle Scholar
  158. 154.
    —————et al. Contact depletion of barley roots as revealed by radio active indicators. Soil Sci.48: 9–24. 1939.Google Scholar
  159. 155.
    —————. Cation interchange between plant roots and soil colloids. Soil Sci.47: 257–272. 1939.CrossRefGoogle Scholar
  160. 157.
    —————. Ionic exchange in relation to the stability of colloidal systems. Jour. Physiol. Chem.39: 593–604. 1935.CrossRefGoogle Scholar
  161. 158.
    Juliano, B. andM. J. Aldama. Morphology ofOryza sativa Linnaeus. Phil. Agr.26: 1–134. 1937.Google Scholar
  162. 159.
    Kearney, T. H. and F. K. Cameron. Some mutual relations between alkali soils and vegetation. U. S. Dept. Agr., Ann. Rep. 71. 1902.Google Scholar
  163. 160.
    ————— On the excretion of hygroscopic salts inFrankenia andStatice. Science19: 419–420. 1904.Google Scholar
  164. 161.
    -----. The wilting coefficient for plants in alkali soils. U. S. Dept. Agr., Bur. Pl. Ind., Circ. 109. 1913.Google Scholar
  165. 162.
    -----and L. L. Harter. The comparative tolerance of various plants for the salts common in alkali soils. U. S. Dept. Agr., Bur. Pl. Ind., Bul. 113. 1907.Google Scholar
  166. 163.
    -----and C. S. Scofield. The choice of crops for saline land. U. S. Dept. Agr., Circ. 404. 1936.Google Scholar
  167. 164.
    Kelley, W. P. A general discussion of the chemical and physical properties of alkali soils. Proc. First Int. Cong. Soil Sci.4: 483–489. 1927.Google Scholar
  168. 165.
    -----. The essential nature of alkali soils and methods for their reclamation. Mezogazdasagi Kut. Sigmond special No. pp. 439–457. 1933.Google Scholar
  169. 166.
    ————— The formation, evaluation, reclamation, and the absorbed bases of alkali soils. Jour. Agr. Sci.24: 72–92. 1934.Google Scholar
  170. 167.
    ————— The so-called Solonetz soils of California and their relation to alkali soils. Am. Soil Survey Bul.15: 45–52. 1934.Google Scholar
  171. 168.
    ————— Modern clay researches in relation to agriculture. Jour. Geol.50: 307–319. 1942.Google Scholar
  172. 169.
    -----and S. Brown. Replaceable bases in soils. Cal. Agr. Exp. Sta., Tech. Bul. 15. 1924.Google Scholar
  173. 170.
    ————— and —————. Base exchange in relation to alkali soils. Soil Sci.20: 477–495. 1925.Google Scholar
  174. 171.
    ————— and —————. An unusual alkali soil. Jour. Am. Soc. Agron.31: 41–43. 1939.Google Scholar
  175. 172.
    -----and A. B. Cummins. The formation of sodium carbonate in soils. Cal. Agr. Exp. Sta., Tech. Bul. 3. 1923.Google Scholar
  176. 173.
    —————. The nature of the base-exchange material of Bentonite, soils and zeolite as revealed by chemical investigation and X-ray analysis. Soil Sci.31: 25–55. 1931.CrossRefGoogle Scholar
  177. 174.
    —————et al. The colloidal constituents of American alkali soils. Soil Sci.51: 101–124. 1941.CrossRefGoogle Scholar
  178. 175.
    —————et al. The colloidal constituents of California soils. Soil Sci.48: 201–255. 1939.CrossRefGoogle Scholar
  179. 176.
    —————. The relation of crystal structure to base exchange and its bearing on base exchanges in soils. Soil Sci.41: 367–382. 1936.Google Scholar
  180. 177.
    —————. Criteria for the identification of the constituents of soil colloids. Soil Sci. Soc. Am., Proc.7: 175–181. 1942.Google Scholar
  181. 178.
    —————. The meaning of the term solonetz. Rep. Am. Soil Survey Assoc.16: 1–3. 1935.Google Scholar
  182. 179.
    -----and E. E. Thomas. Reclamation of the Fresno type of black-alkali soils. Cal. Agr. Exp. Sta., Bul. 455. 1928.Google Scholar
  183. 180.
    Kellogg, C. E. Morphology and genesis of the solonetz soils of western North Dakota. Soil Sci.38: 483–501. 1934.CrossRefGoogle Scholar
  184. 181.
    -----. A glossary of special terms used in the Soils Yearbook. U. S. Dept. Agr., Yearbook, 1938.Google Scholar
  185. 182.
    Kerr, H. W. The identification and composition of the soil alumino silicate active in base exchange and soil acidity. Soil Sci.26: 385–398. 1928.CrossRefGoogle Scholar
  186. 183.
    Kersting-Munster, F. Die Bedeutung des Kalziums fur die höhere Pflanze. Der Forschungsdienst5: 48–57. 1938.Google Scholar
  187. 184.
    Kotzmann, L. G. Effect of increasing sodium saturation on the physical properties of the soil. Mezogazdasagi. Kutatasok8: 141–146. 1935; Chem. Abs.29: 5969.Google Scholar
  188. 185.
    ————— Zusammenhang zwischen der physikalischen Eigenschaften und der Art der absorbierenden Basen der Bodens. Third Int. Cong. Soil Sci. Vol. 1: 24–26. 1935.Google Scholar
  189. 186.
    Kovda, V. A. andL. Ya. Manaeva. Soil toxicity limits of the Pakhta-Aral State Farm (Golodnaya Steppe) for lucerne and cotton growing. Pedology4: 80–98. 1939; Chem. Abs.34: 7953.Google Scholar
  190. 187.
    Kowda, V. A. Die typen der Alkaliböden (Solontzi). Third Int. Cong. Soil Sci.3: 99–102. 1935.Google Scholar
  191. 188.
    Kramer, P. J. Soil moisture as a limiting factor for active absorption and root pressure. Am. Jour. Bot.28: 446–451. 1941.CrossRefGoogle Scholar
  192. 189.
    Krebig, L. Vorkommen, Eigenschaften und Wirtschaftlicher Wert von Magnesia und Kaliboden in Ungarn. Third Int. Cong. Soil Sci.1: 353–357. 1935.Google Scholar
  193. 189a.
    Krebig, L. andK. V. Madar. Studienergebnisse über die Einwirkung von Na-haltige Irrigationswasser auf die Boden-eigenschafter. Congress Int. Tech. Chem. Ind. Agr. Proc. Fifth Congress HollandI: 249–253. 1937.Google Scholar
  194. 190.
    Larsen, C. A. Reclamation of saline (alkali) soil in the Yakima Valley, Washington. Wash. Agr. Exp. Sta., Bul. 376. 1939.Google Scholar
  195. 191.
    Lehr, J. J. The importance of sodium for plant nutrition. I. Soil Sci.52: 237–244. 1941.Google Scholar
  196. 192.
    ————— The importance of sodium for plant nutrition. III. The equilibrium of cations in the beet. Soil Sci.53: 399–411. 1942.CrossRefGoogle Scholar
  197. 193.
    Lindner, R. C. andC. P. Harley. Nutrient interrelations in lime-induced chlorosis. Pl. Physiol.19: 420–439. 1944.Google Scholar
  198. 194.
    Lipman, C. B. A critique of the hypothesis of the lime-magnesia ratio. Pl. World19: 83–105, 119–135. 1916.Google Scholar
  199. 195.
    —————et al. The tolerance of plants for NaCl. Soil Sci.22: 303–322. 1926.CrossRefGoogle Scholar
  200. 196.
    Loehwing, W. F. Calcium, potassium and iron balance in certain crop plants in relation to their metabolism. Pl. Physiol.3: 261–275. 1928.Google Scholar
  201. 197.
    ————— Effect of insolation and soil characteristics on tissue fluid reaction in wheat. Pl. Physiol.5: 293–305. 1930.Google Scholar
  202. 198.
    ————— Nutritional factors in plant growth and development. Iowa Acad. Sci.49: 61–112. 1942.Google Scholar
  203. 199.
    Long, E. M. The effect of salt additions to the substrate on intake of water and nutrients by roots of approach-grafted tomato plants. Am. Jour. Bot.30: 594–601. 1943.CrossRefGoogle Scholar
  204. 200.
    Loughridge, R. H. Tolerance of alkali by various cultures. Cal. Agr. Exp. Sta., Bul. 133. 1901.Google Scholar
  205. 201.
    Lundegardh, H. Salt absorption of plants. Nature145: 114–115. 1940.CrossRefGoogle Scholar
  206. 202.
    MacIntyre, W. H. andJ. B. Young. The transient nature of magnesium induced toxicity and its bearing upon lime-magnesia ratio studies. Soil Sci.15: 427–471. 1923.Google Scholar
  207. 203.
    Mackie, W. W. Reclamation of white-ash lands affected with alkali at Fresno, California. U. S. Dept. Agr., Bur. Soils, Bul. 42. 1907.Google Scholar
  208. 204.
    -----. Rice in the Imperial Valley. 1943. Publ. by Imp. Rice Growers’ Assoc. 1944.Google Scholar
  209. 206.
    Magistad, O. C. The aluminum content of the soil solution and its relation to soil reaction and plant growth. Soil Sci.20: 181–225. 1925.CrossRefGoogle Scholar
  210. 207.
    ————— Ion and plant relationships in western acid soils. Soil Sci.51: 461–471. 1941.CrossRefGoogle Scholar
  211. 208.
    —————. Effect of liming on the growth of pigeon peas in Hawaiian soils. Phil. Agr.21: 654–664. 1933.Google Scholar
  212. 209.
    —————et al. The effect of salt concentration, kind of salt, and climate on plant growth in sand cultures. Pl. Physiol.18: 151–166. 1943.Google Scholar
  213. 210.
    -----And J. E. Christiansen. Saline soils, their nature and management. U. S. Dept. Agr., Circ. 707. 1944.Google Scholar
  214. 211.
    —————et al. Comparison of base exchange equations based on the law of mass action. Soil Sci.57: 371–379. 1944.CrossRefGoogle Scholar
  215. 212.
    —————et al. Effect of sodium nitrate on permeability of western soils. Cal. Citrog.29: 196–197. 1944.Google Scholar
  216. 213.
    —————. Soil solution concentrations at the wilting point and their correlation with plant growth. Soil Sci.55: 351–360. 1943.CrossRefGoogle Scholar
  217. 214.
    —————et al. Determination of soluble salts in soils. Soil Sci.59: —————. 1945. [In press].CrossRefGoogle Scholar
  218. 215.
    Magowan, Florence N. The toxic effect of certain common salts of the soil on plants. Bot. Gaz.45: 45–49. 1908.CrossRefGoogle Scholar
  219. 216.
    Maliushchitskii, N. K. The correlation between the osmotic pressure of nutrient solution and the development and chemical composition of plants.In Dnevn. XII. Siezda Russ. Est. Isp. i Vrach (Moscow), No. 9: 414. 1910. Abs. in Zhur. Opuitn. Agron. (Russ. Jour. Exp. Landw.), Vol. 11, No. 1: 122–124; Exp. Sta. Rec.25: 125. [Russian abstract seen but not original].Google Scholar
  220. 217.
    Mann, H. B. Availability of manganese and of iron as affected by applications of calcium and magnesium carbonates to the soil. Soil Sci.30: 117–141. 1930.CrossRefGoogle Scholar
  221. 218.
    Martin, A. L. The effects of magnesium and calcium on “white tip” of rice. Am. Jour. Bot.26: 846–852. 1939.CrossRefGoogle Scholar
  222. 219.
    Maximov, N. A. The plant in relation to water. 1929.Google Scholar
  223. 220.
    -----. Plant physiology. 1938.Google Scholar
  224. 221.
    McCall, A. G. Physiological balance of nutrient solutions for plants in sand cultures. Soil Sci.2: 207–255. 1916.CrossRefGoogle Scholar
  225. 222.
    McGeorge, W. T. The base exchange property of organic matter in soils. Ariz. Agr. Exp. Sta., Tech. Bul. 30. 1930.Google Scholar
  226. 223.
    -----. Organic compounds associated with base exchange reactions in soils. Ariz. Agr. Exp. Sta., Tech. Bul. 31. 1931.Google Scholar
  227. 224.
    ————— Organic base-exchange compounds in soils. Jour. Am. Soc. Agron.26: 575–579. 1934.Google Scholar
  228. 225.
    -----. Some aspects of citrus tree decline as revealed by soil and plant studies. Ariz. Agr. Exp. Sta., Tech. Bul. 60. 1936.Google Scholar
  229. 226.
    -----. Studies on soil structure: some physical characteristics of puddled soils. Ariz. Agr. Exp. Sta., Tech. Bul. 67. 1937.Google Scholar
  230. 227.
    ————— Some problems connected with fertilization of alkali soils. Cal. Citrog.24: 389, 424. 1939.Google Scholar
  231. 228.
    -----. Studies on plant food availability in alkaline-calcareous soils; seedling tests and soil analyses. Ariz. Agr. Exp. Sta., Tech. Bul. 94. 1942.Google Scholar
  232. 229.
    -----and J. F. Breazeale. The relation of phosphate availability, soil permeability and carbon dioxide to the fertility of calcareous soils. Ariz. Agr. Exp. Sta., Tech. Bul. 36. 1931.Google Scholar
  233. 230.
    ————— and —————. New light on alkali soils. Cal. Citrog.21: 246–247. 1936.Google Scholar
  234. 231.
    -----and -----. Studies on soil structure: effect of puddled soils on plant growth. Ariz. Agr. Exp. Sta., Tech. Bul. 72. 1938.Google Scholar
  235. 232.
    -----et al. Aluminum hydroxide in alkaline soils and it effect upon permeability. Ariz. Agr. Exp. Sta., Tech. Bul. 12. 1926.Google Scholar
  236. 233.
    Mehlick, A. andW. E. Colwell. Influence of nature of soil colloids and degree of base saturation on growth and nutrient uptake by cotton and soybeans. Soil Sci. Soc. Am., Proc.8: 179–184. 1943.Google Scholar
  237. 234.
    Mehta, M. L. The soils of the rice areas of the Gujranwala and Sheikhupura division of the upper Chenab Canal. Punjab Irrig. Res. Inst. Res. Publ.3(2). 1937.Google Scholar
  238. 235.
    Merkle, F. G. and E. C. Dunkle. Burning injury from fertilizers on greenhouse and field crops. Penn. Agr. Exp. Sta., Bul. 446. 1943; Exp. Sta. Rec.90: 755.Google Scholar
  239. 236.
    ————— and —————. Soluble salt content of greenhouse soils as a diagnostic aid. Jour. Am. Soc. Agron.36: 10–19. 1944.Google Scholar
  240. 237.
    Meyer, B. S. and D. B. Anderson. Plant physiology. 1939.Google Scholar
  241. 238.
    Miller, E. C. Plant physiology. 1938.Google Scholar
  242. 239.
    Mitchell, J. The origin, nature and importance of soil organic constituents having base exchange properties. Jour. Am. Soc. Agron.24: 256–275. 1932.Google Scholar
  243. 240.
    Miyake, K. The influence of salts common in alkali soils upon the growth of the rice plant. Jour. Biol. Chem.16: 235–263. 1913.Google Scholar
  244. 241.
    Muller, J. F. Some observations on base exchange in organic materials. Soil Sci.35: 229–237. 1933.CrossRefGoogle Scholar
  245. 242.
    Murphy, H. F. The effect of fertilization on the replaceable bases in the soil. Ok. Acad. Sci., Proc.15: 41–43. 1935.Google Scholar
  246. 243.
    Neidig, R. E. andH. P. Magnuson. Alkali studies: I. Tolerance of wheat for alkali in Idaho soils. Soil Sci.18: 449–467. 1924.Google Scholar
  247. 244.
    Newton, J. D. The relation of the salt concentration of the culture solution to transpiration and root respiration. Sci. Agr.5: 318–320. 1925.Google Scholar
  248. 245.
    Nightingale, G. T. The nitrogen nutrition of green plants. Bot. Rev.3: 85–174. 1937.CrossRefGoogle Scholar
  249. 246.
    —————et al. Effects of calcium deficiency on nitrate absorption and on metabolism in tomato. Pl. Physiol.6: 605–630. 1931.CrossRefGoogle Scholar
  250. 247.
    —————. Effects of nutrient concentration on anatomy, metabolism and bud abscission of sweet pea. Bot. Gaz.97: 477–517. 1936.CrossRefGoogle Scholar
  251. 248.
    Nikiforoff, C. C. The solonetz-like soils in southern California. Jour. Am. Soc. Agron.29: 781–796. 1937.Google Scholar
  252. 249.
    Oden, S. The humic acids, studies in their chemistry, physics and soil science. Kolloid Chem. Beihefte11: 75–260. 1919.CrossRefGoogle Scholar
  253. 250.
    Ogasa, T. Effect of alkaline salts on the germination of seeds. I. Effect of NaCl solutions on the germination of soy beans, especially on the influence at high and low temperatures. Rept. Inst. Sci. Res. Manchukuo3: 303–315. 1939; Biol. Abst.15: 119, No. 1160. 1941. [Original not seen].Google Scholar
  254. 251.
    Olson, L. C. andR. H. Bray. The determination of the organic base-exchange capacity of soils. Soil Sci.45: 483–496. 1938.CrossRefGoogle Scholar
  255. 252.
    Orlovskii, N. V. andA. M. Kupstova. The fundamental causes of toxic phenomena with plants on Solonetz. Pedology9: 73–90 [English summary]. 1939; Chem. Abs.35: 4141.Google Scholar
  256. 253.
    Osterhout, W. J. V. The nature of balanced solutions. Bot. Gaz.47: 148. 1909.CrossRefGoogle Scholar
  257. 254.
    ————— The permeability of protoplasm to ions and the theory of antagonism. Science35: 156–157. 1912.CrossRefGoogle Scholar
  258. 255.
    Page, H. J. andW. Williams. The effect of flooding with sea water on the fertility of the soil. Jour. Agr. Sci.26: 551–573. 1926.Google Scholar
  259. 256.
    Palmer, A. E. Kind, position and toxicity of alkali salts in certain Alberta irrigated soils and tolerance of crops for these salts. Sci. Agr.18: 132–140. 1937.Google Scholar
  260. 257.
    Peech, M. andR. Bradfield. The effect of lime and magnesia on the soil potassium and on the absorption of potassium by plants. Soil Sci.55: 37–48. 1943.CrossRefGoogle Scholar
  261. 258.
    Pepkowitz, L. P. andJ. W. Shive. The importance of oxygen in the nutrient substrate for plants—ion absorption. Soil Sci.57: 143–154. 1944.CrossRefGoogle Scholar
  262. 259.
    Peterson, J. D. andD. S. Jennings. A study of chemical equilibrium existing between soluble salts and base exchange compounds. Soil Sci.45: 277–292. 1938.CrossRefGoogle Scholar
  263. 260.
    Phillis, E. andT. G. Mason. Further studies on transport in the cotton plant. Ann. Bot.3: 889–899. 1939.Google Scholar
  264. 261.
    Pierre, W. H. Hydrogen ion concentration, aluminum concentration in the soil solution, and percentage base saturation as factors affecting plant growth on acid soils. Soil Sci.31: 183–207. 1931.Google Scholar
  265. 262.
    Ponder, E. Symposia on quantitative biology. Vol. 7. 1940.Google Scholar
  266. 263.
    Pozdena, L. Investigations on the dispersing action of the sodium ion upon soil samples. Ztsch. Pflanzenernähr. Dungung u. Bodenk.36A: 99–104. 1934.CrossRefGoogle Scholar
  267. 264.
    Purdy, A. W. Effects of controlled calcium supply on carrots grown in colloidal clay cultures. Am. Soc. Hort. Sci., Proc.37: 799–802. 1939.Google Scholar
  268. 265.
    Puri, A. N. The relation between exchangeable sodium and crop yield in Punjab soils and a new method of characterizing alkali soils. Punjab Irrig. Res. Inst. Res., Publ.4: 1–4, No. 5. 1934.Google Scholar
  269. 266.
    -----and Manohar, Lal. Dispersion and stability of soil colloids in water, Part I. Auto-disintegration. Punjab Irrig. Res. Inst. Res. Publ.4(10). 1938.Google Scholar
  270. 267.
    -----et al. Dispersion and stability of soil colloids in water. Part II. Ultra-clay and the efficiency of dispersion methods. Punjab Irrig. Res. Inst. Res. Publ.4(11). 1938.Google Scholar
  271. 268.
    -----et al. Soil deterioration in the canal irrigated areas of the Punjab, Part III. Formation and characteristics of soil profiles in alkaline alluvium of the Punjab. Punjab Irrig. Res. Inst. Res. Publ.4(9). 1937.Google Scholar
  272. 269.
    Raber, O. L. The antagonistic action of anions. Jour. Gen. Physiol.2: 541–544. 1920.CrossRefGoogle Scholar
  273. 270.
    Rader, L. al. The salt index—a measure of the effect of fertilizers on the concentration of the soil solution. Soil Sci.55: 201–218. 1943.CrossRefGoogle Scholar
  274. 271.
    Ratner, E. I. The influence of exchangeable sodium in the soil on its properties as a medium for plant growth. Soil Sci.40: 459–471. 1935.CrossRefGoogle Scholar
  275. 272.
    ————— The influence of exchangeable sodium in soils on the growth of plants and the physical properties of the soil. Khimizatziya Sotzialist. Zemledeliya.3: 35–45. 1935; Chem. Abs.30: 798.Google Scholar
  276. 273.
    Ravikovitch, S. andN. Bidner. The deterioration of grape vines in saline soils. Emp. Jour. Exp. Agr.5: 197–203. 1937.Google Scholar
  277. 274.
    ————— and ——————. Effects of soil salinity in the Yezreel Valley. Emp. Jour. Exp. Agr.8: 207–214. 1940.Google Scholar
  278. 275.
    Reed, H. S. The value of certain nutritive elements to the plant cell. Ann. Bot.21: 501–543. 1907.Google Scholar
  279. 276.
    Reitemeier, R. F. [Unpublished].Google Scholar
  280. 277.
    Richards, L. A. andL. R. Weaver. Fifteen-atmosphere-percentage as related to the permanent wilting percentage. Soil Sci.56: 331–339. 1943.Google Scholar
  281. 278.
    ————— and —————. Moisture retention by some irrigated soils as related to soil moisture tension. Jour. Agr. Res.69: 215–235. 1944.Google Scholar
  282. 279.
    Rosene, H. F. Control of water transport in local root regions of attached and isolated roots by means of osmotic pressure of the external solution. Am. Jour. Bot.28: 402–410. 1941.CrossRefGoogle Scholar
  283. 280.
    Rost, C. O. Characteristics of some morphological solonetz soils of Minnesota. Jour. Am. Soc. Agron.28: 92–105. 1936.Google Scholar
  284. 281.
    —————. Some solodized soils of the Red River Valley. Soil Sci.55: 301–312. 1943.CrossRefGoogle Scholar
  285. 282.
    Rudolfs, W. Effects of salt solutions having definite osmotic concentration values upon absorption by seeds. Soil Sci.11: 277–293. 1921.CrossRefGoogle Scholar
  286. 283.
    ————— Experiments with common rock salt: I. Effect on asparagus. Soil Sci.12: 449–455. 1921.Google Scholar
  287. 284.
    Ruhland, W. Untersuchungen über die Hautdrüsen der Plumbaginaceen. Jahrb. Wiss. Bot.55: 409–498. 1915.Google Scholar
  288. 285.
    Russell, M. B. Soil moisture sorption curves for four Iowa soils. Proc. Soil Sci. Soc. Am.4: 51–54. 1939.Google Scholar
  289. 286.
    Scheffer, F. and P. Schachtschabel. Chemische Beschaffenheit des Bödens. Sec. 2, Handb. Bodenlehre, Blanck. Vol. II. 1939.Google Scholar
  290. 287.
    Schtscherbak, J. Über die Salzausscheidung durch die Blätter vonStatice Gmeline. Ber. Deut. Bot. Ges.28: 30–34. 1910.Google Scholar
  291. 289.
    Scofield, C. S. The effect of alum on silicate colloids. Jour. Wash. Acad. Sci.11: 438. 1921.Google Scholar
  292. 290.
    Scofield, C. S. The movement of water in irrigated soils. Jour. Agr. Res.27: 617–693. 1924.Google Scholar
  293. 291.
    -----. The Pecos River Joint Investigations. Nat. Res. Plan. Bd., Rep. participating agencies. Wash., D. C. 1942.Google Scholar
  294. 292.
    Sedletskii, I. D. Colloidally dispersed minerals of the principal soil types. Pedology, 61–72. 1942; Chem. Abs.38: 4733. [Original not seen].Google Scholar
  295. 293.
    Sergeev, L. I. Salt resistance of wheats. Compt. Rend. Acad. Sci. U.S.S.R.1: 563–570. 1935.Google Scholar
  296. 294.
    Shive, J. W. A study of physiological balance in nutrient media. Physiol. Res.1: 327–397. 1915.Google Scholar
  297. 295.
    -----. The effect of salt concentration on the germination of seeds. N. J. Agr. Exp. Sta., 38th Ann. Rep. 455–457. 1917.Google Scholar
  298. 296.
    —————. Significant roles of trace elements in the nutrition of plants. Pl. Physiol.16: 435–445. 1941.Google Scholar
  299. 297.
    Sigmond, A. A. J. de. Über die Characterisierung des Bodens auf Grund des salzsäuren Bodenauszuges und des Basenaustauschvermögens. Int. Mitt. Bodenk.5: 164. 1915.Google Scholar
  300. 298.
    —————. The alkali soils of Hungary and their reclamation. Soil Sci.18: 379–381. 1924.Google Scholar
  301. 299.
    ————— Beziehungen der sogenannten kunstlichen Zeolithe mit dem Basenaustausch und den physikalischen Eigenschaften des Bodens. Actes IV Conf. Intl. Pedologie, Rome Vol. 2: 434–443. 1924.Google Scholar
  302. 300.
    -----. Einige vergleichende Untersuchungen üben die Bestimmung der austauschfähigen Kationen, Sattigungszustand und Aziditätsverhaltnisse im Boden. Trans. Sec. Comm. Int. Soc. Soil Sci., Gröningen A: 55–71. 1926.Google Scholar
  303. 301.
    ————— The classification of alkali and salty soils. Proc. First Int. Cong. Soil Sci. Vol. 1: 330–334. 1927.Google Scholar
  304. 302.
    -----. Hungarian alkali soils and their reclamation. Cal. Agr. Exp. Sta., Spec. Publ. 1927.Google Scholar
  305. 303.
    -----. The reclamation of alkali soils in Hungary. Imp. Bur. Soil Sci. Tech. Comm. 23. 1932.Google Scholar
  306. 304.
    ————— Principles and scheme of a general soil system. Soil Res.3: 103–127. 1933.Google Scholar
  307. 305.
    -----. The principles of soil science. 1938.Google Scholar
  308. 306.
    —————et al. The effect of calcium and aluminum salts in alkali soil reclamation. Proc. First Int. Cong. Soil Sci. Vol. 2: 512–517. 1928.Google Scholar
  309. 307.
    Silver, A. H. The possibility of utilizing Reh of Sajji Mitti for the manufacture of commercial alkalies. Agr. Jour. India12: 477–480. 1917.Google Scholar
  310. 308.
    Singh, T. M. Toxicity of “alkali” salts. Soil Sci.6: 463–477. 1918.CrossRefGoogle Scholar
  311. 309.
    Slosson, E. E. Alkali studies IV. Wy. Agr. Exp. Sta., Ann. Rep. pp. 1–29. July, 1899.Google Scholar
  312. 310.
    -----and B. C. Buffum. Alkali studies II. Wy. Agr. Exp. Sta., Bul. 39. 1898.Google Scholar
  313. 311.
    Smirnov, D. S. Peculiarities in the development of flax under the influence of an increased osmotic pressure of the soil solution. Nauch. Agron. Zhur.3: 334–340. 1926; Exp. Sta. Rec.59: 418–419.Google Scholar
  314. 311a.
    —————et al. Ueber die biochemischen Eigentümlichkeiten des Altarius des Laubblätter. Planta6: 687–766. 1928.CrossRefGoogle Scholar
  315. 312.
    Smirnov-Loginov, V. I. and E. Efendi-Zade. The role of absorbed magnesium in the Tugai soils of Azerbaidzhan. Izvest. Azerbaidzhan. Filiala Akad. Nauk. U.S.S.R. 85–96. 1939; Chem. Abs.36: 1426. [Original not seen].Google Scholar
  316. 313.
    Snyder, R. al. Alkali reclamation investigations. Id. Agr. Exp. Sta., Bul. 233. 1940.Google Scholar
  317. 314.
    Sorokin, H. andA. L. Sommer. Changes in the cells and tissues of root tips induced by the absence of calcium. Am. Jour. Bot.16: 23–39. 1929.CrossRefGoogle Scholar
  318. 315.
    Starr, G. H. The control of chlorosis in cottonwood trees and other plants. Wy. Agr. Exp. Sta., Bul. 252. 1942.Google Scholar
  319. 316.
    Steward, F. C. andC. Preston. Effects of pH and the components of bicarbonate and phosphate buffered solutions on the metabolism of potato discs and their ability to absorb ions. Pl. Physiol.16: 481–519. 1941.Google Scholar
  320. 317.
    ————— and —————. The effect of salt concentration upon the metabolism of potato discs and the contrasting effect of potassium and calcium salts which have a common ion. Pl. Physiol.16: 85–116. 1941.Google Scholar
  321. 318.
    Stiles, W. On the relation between the concentration of the nutrient solution and the rate of growth of plants in water culture. Ann. Bot.29: 89–97. 1915.Google Scholar
  322. 319.
    Stol’gane, A. A. Effect of osmotic pressure in nutrient solution of plant growth. Iz Resul’t. Veget. Opytov. Lab. Rabot (Rec. Trav. Lab. Agron.)9: 514–550; Exp. Sta. Rec.35: 434. 1913. [Original not seen].Google Scholar
  323. 320.
    Sushko, S. Y. The role of absorbed magnesium in the formation of solonetz properties in soils. Khim. Sotsial. Zemled. No. 3: 217–220; Chem. Abs.27: 5458. 1933. [Original not seen].Google Scholar
  324. 321.
    Tagawa, T. The relation between the absorption of water by plant roots and the concentration and nature of the surrounding solution. Jap. Jour. Bot.7: 33–60. 1934.Google Scholar
  325. 322.
    Tamhane, V. A. Tolerance of crops towrad “Kalar”. Ann. Rep. Dept. Agr. Sind. 66–74. 1931–2; Chem. Abs.28: 6905. [Original not seen].Google Scholar
  326. 323.
    Taylor, E. al. Soil deterioration in the canal irrigated areas of the Punjab. Part I. Equilibrium between Ca and Na ions in base exchange reactions. Punjab Irrig. Res. Inst. Res. Pub.4: 1–15, No. 7. 1935.Google Scholar
  327. 324.
    Thomas, J. E. An investigation of the problems of salt accumulation on a Mallee soil in the Murray Valley Irrigation Area. Coun. Sci. & Ind. Res., Australia, Bul. 128. 1939.Google Scholar
  328. 325.
    Thorne, D. W. andA. Wallace. Some factors affecting chlorosis of high-lime soils: I. Ferrous and Ferric Iron. Soil Sci.57: 299–312. 1944.CrossRefGoogle Scholar
  329. 326.
    Tiedjens, V. A. andL. G. Schermerhorn. Available calcium a factor in salt balance for vegetable crops. Soil Sci.42: 419–433. 1936.CrossRefGoogle Scholar
  330. 327.
    Tottingham, W. E. A quantitative chemical and physiological study of nutrient solutions for plant cultures. Physiol. Res.1: 133–245. 1914.Google Scholar
  331. 328.
    Treitz, P. Preliminary report on the alkali-land investigations in the Hungarian Great-Plains in the year 1926. Royal Hungarian Geol. Survey. 1927.Google Scholar
  332. 329.
    Tromp, F. J. andJ. B. Osborn. A study of Brak soils in the Transvaal. So. Afr. Jour. Ind.5: 206–214. 1922; Exp. Sta. Rec.48: 420.Google Scholar
  333. 330.
    Truog, al. Fertilizer experiments. Methods of application and effect on germination, early growth, hardiness, root growth, lodging, maturity, quality and yield. Wis. Agr. Exp. Sta., Res. Bul. 65. 1925.Google Scholar
  334. 331.
    Tulaikov, N. M. The plant and the salt of the soil.In Zhur. Opuitn. Agron. [Russ. Jour. Exp. Landw.], Vol. 13, No. 1: 27–53. 1912; Chem. Abs.7: 1778; Exp. Sta. Rec.27: 215.Google Scholar
  335. 332.
    Tulaikov, N. M. The soil solution and its importance in the growth of plants. Soil Sci.15: 229–233. 1923.CrossRefGoogle Scholar
  336. 333.
    Turner, P. E. The state of unsaturation of the soil in relation to its field behavior and lime requirement. Soil Sci.30: 349–381. 1930.CrossRefGoogle Scholar
  337. 334.
    Van Eijk, M. Analyse der Wirkung des NaCl auf die Entwicklung, Sukkulenz und Transpiration beiSalicornia Herbacea, sowie Untersuchungen über den Einfluss der Salzaufnahme auf die Wurzelatmung beiAster Tripolium. Rec. Trav. Bot. Néerl.36: 559–657. 1939.Google Scholar
  338. 335.
    Vanselow, A. P. Equilibria of base exchange reactions of bentonites, permutites, soil colloids and zeolites. Soil Sci.33: 95–113. 1932.CrossRefGoogle Scholar
  339. 336.
    Veihmeyer, F. J. Some factors affecting the irrigation requirements of deciduous orchards. Hilgardia2: 125–287. 1927.Google Scholar
  340. 337.
    —————. Soil moisture conditions in relation to plant growth. Pl. Physiol.2: 71–82. 1927.Google Scholar
  341. 338.
    Vikulina, L. A. A study of the physiology of sugar and fodder beets on solonetz soils. Trav. Inst. Recherches Biol. Perm. (U.S.S.R.)8, No. 1–2: 1–37 [English summary]. 1938; Chem. Abs.33: 7022.Google Scholar
  342. 339.
    Vilensky, D. G. The classification of soils on the basis of analogous series in soil formation. Proc. Int. Soc. Soil Sci. Vol. 1: 224–241. 1924.Google Scholar
  343. 340.
    —————. Some data about alkali soils of Russia. Soil Res.1: 50–66. 1928.Google Scholar
  344. 341.
    -----. Saline and alkaline soils of the U.S.S.R. Pochvovedenie4: 1930; Chem. Abs.26: 1691. [Original not seen].Google Scholar
  345. 342.
    Vine, al. Studies of aeration of cacao soils in Trinidad Trop. Agric. (B.W.I.) I,19: 175–180. 1942; II,19: 215–223. 1942; III,20: 13–24. 1943; IV,20: 51–56. 1943.Google Scholar
  346. 343.
    Vlamis, J. andA. R. Davis. Germination growth and respiration of rice and barley seedlings at low oxygen pressures. Pl. Physiol.18: 685–692. 1943.Google Scholar
  347. 344.
    Volkens, G. Die Kalkdrüsen der Plumbaginaceen. Ber. Deut. Bot. Ges.2: 334–342. 1884.Google Scholar
  348. 345.
    Wadleigh, C. H. and A. D. Ayers. Biochemical composition of bean plants as conditioned by soil moisture tension and salt concentration. Pl. Physiol. [In press].Google Scholar
  349. 346.
    —————. Assimilation in bean plants of nitrogen from saline solutions. Am. Soc. Hort. Sci., Proc.41: 360–364. 1942.Google Scholar
  350. 347.
    -----and -----. The influence of high concentrations of sodium sulfate, sodium chloride, calcium chloride, and magnesium chloride on the growth of guayule in sand cultures. Soil Sci. [In press].Google Scholar
  351. 348.
    —————et al. The relation between the chemical nature of the substrate and the degree of chlorosis in corn. Soil Sci.43: 153–176. 1937.CrossRefGoogle Scholar
  352. 349.
    Waksman, S. A. andK. R. N. Iyer. Contributions to our knowledge of the chemical nature and origin of humus III. The base exchange capacity of “synthesized humus” (ligno-protein) and of natural humus complexes. Soil Sci.36: 57–67. 1933.Google Scholar
  353. 350.
    Wall, R. F. and F. B. Cross. Greenhouse studies of toxicities of Oklahoma salt contaminated waters. Ok. Agr. Exp. Sta., Tech. Bul. T-20. 1943.Google Scholar
  354. 351.
    —————. Sand culture studies of the effects of various concentrations of added salts upon the composition of tomato plants. Am. Soc. Hort. Sci., Proc.40: 460–466. 1942.Google Scholar
  355. 352.
    Wallace, T. Investigations on chlorosis of fruit trees. II. The composition of leaves, bark, and wood of current season’s shoots in cases of lime-induced chlorosis. Jour. Pom. & Hort. Sci.7: 172–183. 1928.Google Scholar
  356. 353.
    —————. Investigations on chlorosis of fruit trees. I. The composition of apple leaves in cases of lime-induced chlorosis. Jour. Pom. & Hort. Sci.5: 115–123. 1926.Google Scholar
  357. 354.
    Wann, F. B. Control of chlorosis in American grapes. Utah Agr. Exp. Sta., Bul. 299. 1941.Google Scholar
  358. 355.
    Webb, al. The effect of replaceable bases on the physical properties of soils with special reference to the effect of replaceable calcium and sodium on index of friability. Soil Sci.41: 13–24. 1936.CrossRefGoogle Scholar
  359. 356.
    Webster, J. F. and B. Viswanath. Further studies of alkali soils in Iraq. (Mesopotamia) Dept. Agr. Mem. 5 (1921), 1–46; Exp. Sta. Rec.47: 811.Google Scholar
  360. 357.
    Weisz, Lorenz. Der Kationen Umtausch an Permutiten und seine Formulierung. Diss., Budapest. 1932.Google Scholar
  361. 358.
    Wet, J. D. de. The reclamation of brak soils. Farm. So. Africa9: 69. 1934.Google Scholar
  362. 359.
    White, L. M. andWm. H. Ross. Effect of various grades of fertilizers on the salt content of the soil solution. Jour. Agr. Res.59: 81–100. 1939.Google Scholar
  363. 360.
    Whitney, J. B., Jr. Effects of the composition of the soil atmosphere on the absorption of water by plants. Ohio State Univ., Abs. Doc. Diss.38: 97–103. 1942.Google Scholar
  364. 361.
    Whitney, R. S. andR. Gardner. The effect of carbon dioxide on soil reaction. Soil Sci.55: 127–141. 1943.CrossRefGoogle Scholar
  365. 362.
    Wursten, J. L. andW. L. Powers. Reclamation of Virgin black alkali soils. Jour. Am. Soc. Agron.26: 752–762. 1934.Google Scholar

Copyright information

© The New York Botanical Garden 1945

Authors and Affiliations

  • O. C. Magistad
    • 1
  1. 1.U. S. Regional Salinity LaboratoryRiverside

Personalised recommendations