Metal ion complexation of hydrophilic polymeric amino ligands derived from tetraethyleneglycol diacrylate (TTEGDA)-crosslinked polyacrylamides

  • Beena Mathew
  • V N Rajasekharan Pillai
Inorganic And Analytical


Complexation behaviour of amino ligands supported on polyacrylamides with 2–20 mol% of tetraethyleneglycol diacrylate crosslinks was investigated towards Co(II), Ni(II), Cu(II), Zn(II) and Hg(II) ions. The metal ion intake was dependent on the extent of crosslinking and followed the order: Hg(II)>Cu(II)>Zn(II)>Ni(II)>Co(II). The aminopolyacrylamides and their metal complexes were characterised by IR and EPR techniques. The absorptions of the ligands were shifted by complexation with metal ions and the EPR spectrum suggested distorted tetragonal geometry for the Cu(II) complex. The thermogravimetric analysis of the metal complexes revealed a pattern of variation of thermal stability on incorporation of metal ions. The kinetics and adsorption parameters of complexation, swelling characteristics, recyclability and specificity of metal-desorbed systems are also described.


Polymer-metal complexes crosslinked polyacrylamides amine-metal complexes specificity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson A W 1990Physical chemistry of surfaces (New York: J Wiley)Google Scholar
  2. Chandy M C and Pillai V N R 1991Polymer science: Contemporary themes (ed.) S Sivaram (New Delhi: McGraw Hill)Google Scholar
  3. Ciardelli F, Altomare A, Conti G, Arribas G, Mendez B and Ismayel A 1994Macromol. Sym. 80 29Google Scholar
  4. Coats A W and Redfern J P 1964Nature (London) 201 68CrossRefGoogle Scholar
  5. Drago R S and Gaul J H 1979Inorg. Chem. 18 2019CrossRefGoogle Scholar
  6. Egawa H, Nonaka T and Nakayama M 1988J. Macromol. Chem. Sci. A25 1407CrossRefGoogle Scholar
  7. Fujita T, Nakamoto K and Kobayashi M 1956J. Am. Chem. Soc. 78 3295CrossRefGoogle Scholar
  8. Green R B and Hancock R D 1981Hydrometallurgy 6 353CrossRefGoogle Scholar
  9. Inman J K and Dintziz H M 1969Biochemistry 8 4074CrossRefGoogle Scholar
  10. Kivelson D and Neiman R 1961J. Chem. Phys. 35 149CrossRefGoogle Scholar
  11. Laidler K J 1986Chemical kinetics (New York: Harper and Row)Google Scholar
  12. Madhusudanan P M, Krishnan K and Ninan K N 1986Thermochim. Acta 197 189CrossRefGoogle Scholar
  13. Nishide H, Deguchi J and Tsuchida E 1977J. Polym. Sci., Polym. Chem. Ed. 15 3023CrossRefGoogle Scholar
  14. Nishide H, Shimidzu N and Tsuchida E 1982J. Appl. Polym. Sci. 27 4161CrossRefGoogle Scholar
  15. Peisach J and Blumberg W F 1974Arch. Biochem. Biophys. 165 691CrossRefGoogle Scholar
  16. Pillai V N R and Mathew B 1993Indian J. Technol. 31 302Google Scholar
  17. Sarin V K, Kent S B H, Tam J P and Merrifield R B 1981Anal. Biochem. 117 147CrossRefGoogle Scholar
  18. Warshawsky A 1988 InSyntheses and separations using functional polymers (eds) D C Sherrington and P Hodge (New York: Wiley)Google Scholar
  19. Welleman J A, Hulsberger F B and Reedijk J 1981Makromol Chem. 182 785CrossRefGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1996

Authors and Affiliations

  • Beena Mathew
    • 1
  • V N Rajasekharan Pillai
    • 1
  1. 1.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations