Skip to main content
Log in

Genetics of polyploidy

  • Published:
The Botanical Review Aims and scope Submit manuscript

Conclusion

In general, then, genetic evidence from polyploids harmonizes surprisingly well with concepts based on the modern gene-chromosome law of heredity. This is true for both the individual hereditary characters and the organism as a whole. With the former, it is evident that character inheritance follows the particular gene distribution even when the cytological mechanism is disturbed by the addition of chromosomes.

The organism as a whole is also influenced by polyploidy but the relations of the parts are, nevertheless, maintained. The addition of one chromosome in a trisomic, for example, alters many individual characters and upsets the favorable balance of plus and minus factors established in the diploid by long continued selection. Nevertheless, the plant continues to function as a whole. This can mean only that there is a high degree of elasticity in an organism, affording a margin of safety for variable conditions. This may well explain the success of the mutation theory of evolution in giving new mutations time to become established and to become fitted into the germinal complex in which they arose. True polyploidy affords, in addition, extra gene loci as sources for new mutations. Such extra loci, as they mutate, must preserve a correlated function with their original sister loci and the polyploid condition would seem to afford time and protection for this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Allen, C. E. Polyploidy inSphaerocarpus. Proc. 6th Int. Congr. Genetics2: 1–2. 1932.

    Google Scholar 

  2. Bartlett, M. S. andHaldane, J. B. S. The theory of inbreeding in autotetraploids. Jour. Genetics29: 175–180. 1934.

    Google Scholar 

  3. Beatus, Richard. Genetik und Chiasmatypie bei Polyploiden. Der Biologe4: 1–11. 1935.

    Google Scholar 

  4. Belling, John andBlakeslee, A. F. The distribution of chromo-somes in tetraploidDatura. Am. Nat.58: 60–70. 1924.

    Article  Google Scholar 

  5. ——. The reduction division in haploid, diploid, triploid and tetraploidDaturas. Proc. Nat. Acad. Sci.9: 106–111. 1923.

    Article  PubMed  CAS  Google Scholar 

  6. Blakeslee, A. F. Types of mutations and their possible significance in evolution Am. Nat.55: 254–267. 1921.

    Article  Google Scholar 

  7. — andSinnott, E. W. Structural changes associated with factor mutations and with chromosome mutations inDatura. Proc. Nat. Acad. Sci.8: 17–19. 1922.

    Article  PubMed  Google Scholar 

  8. — andFarnham, M. E. Trisomie inheritance in the Poin-settia mutant ofDatura. Am. Nat.57: 481–495. 1923.

    Article  Google Scholar 

  9. —,Belling, J. andFarnham, M. E. Inheritance of tetra-ploidDatura. Bot. Gaz.76: 329–373. 1923.

    Article  Google Scholar 

  10. Brink, R. A. Cytogenetic evolutionary processes in plants. Am. Nat.69: 97–124. 1935.

    Article  Google Scholar 

  11. Clausen, R. E. andGoodspeed, T. H. Interspecific hybridization inNicotiana. II. A tetraploidglutinosa-tabacum hybrid, an experi-mental verification of Winge’s hypothesis. Genetics10: 278–284. 1925.

    PubMed  CAS  Google Scholar 

  12. ——. Inheritance inNicotiana tabacum. The tri-somie character, “enlarged.” Genetics9: 181–197. 1924.

    PubMed  CAS  Google Scholar 

  13. Collins, G. N. andLongley, A. E. A tetraploid hybrid of maize and perennial teosinte. Jour. Agr. Res.50: 123–133. 1935.

    Google Scholar 

  14. Crane, M. B. andDarlington, C. D. Chromatid segregation in tetraploidRubus. Nature129: 869. 1932.

    Article  Google Scholar 

  15. Darlington, C. R. Recent advances in cytology. 1932.

  16. —. Meiosis in diploid and tetraploidPrimula sinensis. Jour. Genetics24: 65–96. 1931.

    Google Scholar 

  17. Emerson, R. A. Genetic notes on hybrids of perennial Teosinte and maize. Am. Nat.63: 289–300. 1929.

    Article  Google Scholar 

  18. — andBeadle, G. W. A fertile tetraploid hybrid betweenEuchlaena perennis andZea mays. Am. Nat.64: 190–192. 1930.

    Article  Google Scholar 

  19. Fernandes, A. Nouvelles études caryologiques sur le genreNarcissus L. Bol. Soc. Broteriana11: 1–198. 1934.

    Google Scholar 

  20. Gregory, R. P. On the genetics of tetraploid plants inPrimula sinensis. Proc. Roy. Soc. B.87: 484–492. 1914.

    Google Scholar 

  21. Haldane, J. B. S. Theoretical genetics of autopolyploids. Jour. Genetics22: 359–372. 1930.

    Google Scholar 

  22. Humphrey, L. M. The meiotic divisions of haploid, diploid and tetra-ploid tomatoes with special reference to the prophase. Cytologia5: 278–300. 1934.

    Google Scholar 

  23. Huskins, C. L. The origin ofSpartina Townsendii. Genetica12: 531–538. 1930.

    Article  Google Scholar 

  24. Jorgensen, C. A. The experimental formation of heteroploid plants in the genusSolatium. Jour. Genetics19: 133–211. 1928.

    Google Scholar 

  25. Karpechenko, G. D. The production of polyploid gametes in hybrids. Hereditas9: 349–308. 1927.

    Google Scholar 

  26. —. Polyploid hybrids ofRaphanus sativus L ×Brassica oleracea L. Zeits. Induk. Abst. Vererb.48: 1–85. 1928.

    Article  Google Scholar 

  27. Lawrence, W. J. C. The genetics and cytology ofDahlia variabilis. Jour. Genetics24: 257–306. 1931.

    Google Scholar 

  28. Lesley, J. W. A cytological and genetical study of progenies of triploid tomatoes. Genetics13: 1–43. 1928.

    PubMed  CAS  Google Scholar 

  29. — andMann, M. C. Triploidy in the tomato. Science61: 208. 1925.

    Article  PubMed  CAS  Google Scholar 

  30. —. The genetics ofLycopersicum esculentum Mill. I. The trisomic inheritance of “dwarf.” Genetics11: 352–354. 1926.

    PubMed  CAS  Google Scholar 

  31. Lindstrom, E. W. andKoos, Katharine. Cyto-genetic investigations of a haploid tomato and its diploid and tetraploid progeny. Am. Jour. Bot.18: 398–410. 1931.

    Article  Google Scholar 

  32. — andHumphrey, L. M. Comparative cyto-genetic studies of tetraploid tomatoes from different origins. Genetics18: 193–200. 1933.

    PubMed  CAS  Google Scholar 

  33. Longley, A. E. Chromosomes in grass sorghums. Jour. Agr. Res.44: 317–321. 1932.

    Google Scholar 

  34. McClintock, Barbara. A cytological and genetical study of triploid maize. Genetics14: 180–182. 1929.

    PubMed  CAS  Google Scholar 

  35. Muller, H. J. A new mode of segregation in Gregory’s tetraploidPrimulas. Am. Nat.48: 508–512. 1914.

    Article  Google Scholar 

  36. Müntzing, Arne. Cytogenetic investigations on syntheticGaleopsis tetrahit. Hereditas16: 105–154. 1932.

    Google Scholar 

  37. Newton, W. C. F. and Pellew, Caroline.Primula Kewensis and its derivatives. Jour. Genetics20: 405–467. 1929.

    Google Scholar 

  38. — andDarlington, C. D. Meiosis in polyploids. I. Jour. Genetics21: 1–15. 1929.

    Google Scholar 

  39. Pellew, Caroline andDurham, F. The genetic behavior of the hybridPrimula Kewensis and its allies. Jour. Genetics5: 157. 1916.

    Google Scholar 

  40. Randolph, L. F. Cytogenetics of tetraploid maize. Jour. Agr. Res.50: 591–605. 1935.

    Google Scholar 

  41. Rhoades, Marcus M. An experimental and theoretical study of chro-matid crossing øver. Genetics18: 535–555. 1933.

    PubMed  CAS  Google Scholar 

  42. — andMcClintock, Barbara. The cytogenetics of maize. Bot. Rev.1: 292–325. 1935.

    Article  Google Scholar 

  43. Rohweder, H. Beiträge zur Systematik and Phylogenie des GenusDianthus. Bot. Jahrb. Systematik66: 249–366. 1934.

    Google Scholar 

  44. Sansome, F. W. Chromatid segregation inSolanum lycopersicum. Jour. Genetics27: 105–132. 1933.

    Article  Google Scholar 

  45. -and Philp, J. Recent advances in plant genetics. 1932.

  46. Sharp, L. W. Introduction to cytology. 1934.

  47. Sinnort, E. W., Houghtaling, Helen and Blakeslee, A. F. The comparative anatomy of extra-chromosomal types inDatura stramonium. Carnegie Inst. Wash. Pub. 451. 1934.

  48. Skovsted, A. Cytological investigations of the genusAesculus L. Hereditas12: 64–70. 1929.

    Article  Google Scholar 

  49. Sömme, A. Sverdrup. Genetics and cytology of the tetraploid form ofPrimula sinensis. Jour. Genetics23: 447–509. 1930.

    Google Scholar 

  50. Wanscher, J. H. The basic chromosome number of the higher plants. New Phyt.33: 101–126. 1934.

    Article  Google Scholar 

  51. Wettstein, F. v. Morphologie und Physiologie des Fonnwechsels der Moose auf genetischer Grundlage. I. Zeits. Induk. Abst. Vererb.33: 1–236. 1924.

    Article  Google Scholar 

  52. —. Morphologie und Physiologie des Formwechsels der Moose auf genetischer Grundlage. II. Bibliotheca Genetica10: 1–216. 1928.

    Google Scholar 

  53. Winkler, H. Über die experimentelle Erzeugung von Pflanzen mit abweichenden Chromosomenzahlen. Zeits. Bot.8: 417–544. 1916.

    Google Scholar 

  54. de Winton, D. andHaldane, J. B. S. Linkage in the tetraploidPrimula sinensis. Jour. Genetics24: 121–144. 1931.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper No. 70, Department of Genetics, Iowa State College, Ames, Iowa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindstrom, E.W. Genetics of polyploidy. Bot. Rev 2, 197–215 (1936). https://doi.org/10.1007/BF02872444

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872444

Keywords

Navigation