The Botanical Review

, Volume 7, Issue 11, pp 587–648 | Cite as

With special reference to their physical and photochemical properties and to analytical methods

  • F. P. Zscheile
Plastid Pigments


Chlorophyll Carotenoid Porphyrine Lycopene Botanical Review 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Adam Hilger, Ltd. London, England. Nutting colorimeter.Google Scholar
  2. 2.
    -----. Spekker photoelectric absorptiometer.Google Scholar
  3. 3.
    Albers V. M., andKnorr, H. V. The absorption spectra of solutions of pure chlorophyll and of chloroplasts in living cells. Science85: 51–52. 1937.Google Scholar
  4. 4.
    ————— Absorption spectra of single chloroplasts in living cells in the region from 664 mµ to 704 mµ. Pl. Physiol.12: 833–843. 1937.Google Scholar
  5. 5.
    —————, ————— Fluorescence of the chlorophyll series: The reversible reduction of chlorophylla andb. Physiol. Rev.47: 198. 1935.Google Scholar
  6. 6.
    American Instrument Co. Silver Spring, Maryland. Neutral wedge photometer.Google Scholar
  7. 7.
    -----. Type V photoelectric photometer.Google Scholar
  8. 8.
    Arthur H. Thomas Co. Philadelphia, Pa. Klett-Summerson photo-electric colorimeter.Google Scholar
  9. 9.
    Baas Becking, L. G. M., andKoning, H. C. Preliminary studies on the chlorophyll spectrum. Proc. Kon. Ak. Amst.37: 674–678. 1934.Google Scholar
  10. 10.
    Bakker, H. A. Purification of chlorophyll. Proc. Kon. Ak. Amst.37: 679–684. 1934.Google Scholar
  11. 11.
    ————— Notes on the colloid chemistry of chlorophyll. Proc. Kon. Ak. Amst.37: 688–694. 1934.Google Scholar
  12. 12.
    Barnett, H. M. The determination of carotene in butter fat. Jour. Biol. Chem.105: 259–267. 1934.Google Scholar
  13. 13.
    Batty, J. W., Heilbron, I. M., andJones, W. E. Studies in the polyene series. Jour. Chem. Soc.329: 1556–1560. 1939.CrossRefGoogle Scholar
  14. 14.
    Baxter, J. G., andRobeson, C. D. Crystalline vitamin A palmitate and vitamin A alcohol. Science92: 203–204. 1940.PubMedCrossRefGoogle Scholar
  15. 15.
    Benne, E. J., Wolman, W., Hibbard, R. P., andMiller, E. J. A comparison of the Petering-Wolman-Hibbard procedure for determining carotene, and two modifications thereof with the Peterson-Hughes-Freeman technic. Jour. Assoc. Official Agr. Chem.23: 709–716. 1940.Google Scholar
  16. 16.
    Biermacher, O. The visible and infra-red fluorescence spectra of chlorophylla, chlorophyllb, and several porphyrins. Thesis, Univ. Freibourg, Switzerland. 1936.Google Scholar
  17. 17.
    Bills, C. E., andMcDonald, F. G. The carotene content of ten varieties of carrots. Science76: 108. 1932.PubMedCrossRefGoogle Scholar
  18. 18.
    Blaydes, G. W. Preserving the natural color of green plants. Science85: 126–127. 1937.PubMedCrossRefGoogle Scholar
  19. 19.
    Bogert, M. T. Carotenoids: The polyene pigments of plants and animals. Organic Chemistry, by Gilman, H.: pp. 1138–1219. 1938.Google Scholar
  20. 20.
    Bowden, F. P., andMorris, S. D. D. Physico-chemical studies of complex organic molecules. Part II. Absorption spectra at low temperatures. Proc. Roy. Soc. B115: 274–278. 1934.Google Scholar
  21. 21.
    Brice, A. A compensating circuit for blocking layer photoelectric cells. R. S. I.8: 279–285. 1937.CrossRefGoogle Scholar
  22. 22.
    Brooke, R. O., Tyler, S. W., andBaker, W. S. Determination of beta-carotene in alfalfa meals. Ind. Eng. Chem., Anal. Ed.11: 104–106. 1939.CrossRefGoogle Scholar
  23. 23.
    Bruins, H. R., Overhoff, J., andWolff, L. K. The molecular weight of vitamin A. Biochem. Jour.25: 430–438. 1931.Google Scholar
  24. 24.
    Bünning, E. Phototropismus und Carotinoide. III. Weitere Untersuchungen an Pilzen und höheren Pflanzen. Planta27: 583–610. 1938.CrossRefGoogle Scholar
  25. 25.
    Buxton, L. O. Carotenoids in yellow corn. Ind. Eng. Chem., Anal. Ed.11: 128–129. 1939.CrossRefGoogle Scholar
  26. 26.
    Buxton, L. O., andDombrow, B. A. The carotenoids in forage. Ind. Eng. Chem., Anal. Ed.10: 262–263. 1938.CrossRefGoogle Scholar
  27. 26a.
    Carter, G. P., andGillam, A. E. The isomerization of carotenes. III. Reconsideration of the change β-carotene to ωα-carotene. Biochem. Jour.33: 1325–1331. 1939.Google Scholar
  28. 27.
    Carter, P. W., Heilbron, I. M., andLythgoe, B. The lipochromes and sterols of the algal classes. Proc. Roy. Soc. London B128: 82–108. 1939.Google Scholar
  29. 28.
    Central Scientific Co. Chicago, Ill. Cenco photoelectric spectro-photometer.Google Scholar
  30. 29.
    -----. Cenco-Sheard-Sanford photolometer.Google Scholar
  31. 30.
    Chicago Apparatus Co. Chicago, Ill. Schoenberg electric colorimeter.Google Scholar
  32. 31.
    Clark, G. L., andGring, J. L. Carotenoids in yellow corn. Ind. Eng. Chem., Anal. Ed.9: 271–274. 1937.CrossRefGoogle Scholar
  33. 32.
    Clausen, S. W., andMcCoord, A. B. The determination of carotene and xanthophyll by a single distribution between liquid phases. Jour. Biol. Chem.113: 89–104. 1936.Google Scholar
  34. 33.
    Cold Spring Harbor Symposia on Quantitative Biology III. Long Island Biological Association. 1935.Google Scholar
  35. 34.
    Coleman Electric Co., Inc. Maywood, Ill. The Coleman regional spectrophotometer.Google Scholar
  36. 35.
    Conant, J. B., andKamerling, S. E. Studies in the chlorophyll series. VII. Evidence as to structure from measurements of absorption spectra. Jour. Am. Chem. Soc.53: 3522–3529. 1931.CrossRefGoogle Scholar
  37. 36.
    Connor, C. L. Studies on lipochromes. II. The identification of carotin, xanthophyll, and associated lipoids in tissues. Amer. Jour. Path.4: 235–244. 1928.Google Scholar
  38. 37.
    Dániel, E., andScheff, G. J. An improved method for determination of blood carotene. Proc. Soc. Expt. Biol. & Med.33: 26–30. 1935.Google Scholar
  39. 38.
    Dastur, R. H., andDesai, B. L. The relation between water-content, chlorophyll-content, and the rate of photosynthesis in some tropical plants at different temperatures. Ann. Bot.57: 69–88. 1933.Google Scholar
  40. 39.
    ————— Chlorophyll from tropical plants and its quantitative determination by means of the spectrograph. Ann. Bot.42: 949–964. 1928.Google Scholar
  41. 40.
    Deleano, N. T., andDick, J. Beiträge zur Kenntnis des Carotins. Neue Methoden zur Darstellung, Nachweis und Bestimmung. Bul. Soc. Chimie România14: 117–170. 1932.Google Scholar
  42. 41.
    Deleano, N. T., andDick, J. Eine neue Methode zur Bestimmung des Chlorophylls. Biochem. Zeits.268: 317–321. 1934.Google Scholar
  43. 42.
    Deuber, C. G. Mineral nutrition and chlorophyll development in seedlings. Am. Jour. Bot.15: 271–276. 1928.CrossRefGoogle Scholar
  44. 43.
    ————— Chlorophyll in tree leaves. Jour. For.27: 76–77. 1929.Google Scholar
  45. 44.
    Dhéré, Ch. Sur le spectre de fluorescence de la protochlorophylle. Comp. Rend. Acad. Sci.192: 1496–1499. 1931.Google Scholar
  46. 45.
    -----. La spectrochimie de fluorescence dans l’étude des produits biologiques. Forts. Chemie Org. Nat. II. 301–341. 1939.Google Scholar
  47. 46.
    ————— Sur la purification et le spectre de fluorescence de la chlorophylleb. Comp. Rend. Seances Soc. Biol.122: 591–594. 1936.Google Scholar
  48. 47.
    Duggar, B. M. Biological effects of radiation. 1936.Google Scholar
  49. 48.
    Egle, K. Über die Gültigkeit der Kundt’schen Regel bei Chlorophyllspektren. Sitzungsb. Heidelb. Akad. Wiss.1: 19–29. 1939.Google Scholar
  50. 49.
    Ehrisman, O., andNoethling, W. Die Absorptionsspektren des Pyocyanins, Prodigiosins und Violaceins. Biochem. Zeits.284: 376–382. 1936.Google Scholar
  51. 50.
    E. Leitz, Inc. New York City. Leifo photometer.Google Scholar
  52. 51.
    Embree, N. D., andShantz, E. M. Cyclization of vitamin A2. Jour. Biol. Chem.132: 619–626. 1940.Google Scholar
  53. 52.
    Emerson, R. Recent investigations of chlorophyll photosynthesis. Ergebn. Enzym.5: 305–347. 1936.Google Scholar
  54. 53.
    ————— Photosynthesis. Ann. Rev. Biochem.6: 535–553. 1937.CrossRefGoogle Scholar
  55. 54.
    ————— The photochemical reaction in photosynthesis. Jour. Gen. Physiol.16: 191–204. 1932.CrossRefGoogle Scholar
  56. 55.
    ————— Relation between quantity of chlorophyll and capacity for photosynthesis. Pl. Physiol.15: 311–317. 1940.Google Scholar
  57. 56.
    Euler, H. v., Bergman, B., andHellström, H. Über das Verhältnis von Chloroplastenzahl und Chlorophyllkonzentration beiElodea densa. Ber. Deut. Bot. Ges.52: 458–462. 1934.Google Scholar
  58. 57.
    Ferguson, W. S., andBishop, G. The estimation of carotene in agricultural products. The Analyst61: 515–518. 1936.CrossRefGoogle Scholar
  59. 58.
    Ferrari, C. G. Spectrophotometric determination of the carotinoid pigment content of wheat flour. Cereal Chemistry10: 277–286. 1933.Google Scholar
  60. 59.
    ————— Carotinoid pigments of flour. Cereal Chemistry6: 218–240. 1929.Google Scholar
  61. 60.
    —————. The determination of carotin in flour. Cereal Chemistry6: 347–371. 1929.Google Scholar
  62. 61.
    Fischer, H. Zur Kenntnis von Chlorophyll. Annalen537: 170–177. 1939.Google Scholar
  63. 62.
    ————— Über Bacteriochlorophylla. Zeits. Physiol. Chem.249: I-III. 1937.Google Scholar
  64. 63.
    Fisher Scientific Co. Pittsburgh, Penn. Fisher electrophotometer.Google Scholar
  65. 64.
    Fleischer, W. E. The relation between chlorophyll content and rate of photosynthesis. Jour. Gen. Physiol.18: 573–597. 1935.CrossRefGoogle Scholar
  66. 65.
    Fox, D. L. Carotenoids and other lipoid-soluble pigments in the sea and in deep marine mud. Proc. Nat. Acad. Sci.23: 295–301. 1937.PubMedCrossRefGoogle Scholar
  67. 66.
    Franck, J., andTeller, E. Migration and photochemical action of excitation energy in crystals. Jour. Chem. Physics6: 861–872. 1938.CrossRefGoogle Scholar
  68. 67.
    ————— Fluorescence of chlorophyll in its relation to photochemical processes in plants and organic solutions. Jour. Chem. Phys.4: 551–560. 1936.CrossRefGoogle Scholar
  69. 68.
    Fraps, G. S., Kemmerer, A. R., andGreenberg, S. M. Factors affecting adsorptive power of magnesia for carotene. Ind. Eng. Chem., Anal. Ed.12: 16–18. 1940.CrossRefGoogle Scholar
  70. 69.
    —— ——. Determination of carotene in presence of lycopene. Jour. Soc. Official Agr. Chem.23: 422–425. 1940.Google Scholar
  71. 70.
    —— ——. An adsorption method for the determination of pure carotene. Jour. Assoc. Official Agr. Chem.23: 659–662. 1940.Google Scholar
  72. 71.
    ————— Relation of the carotene content of certain feed materials to their vitamin A potency. Jour. Agr. Res.53: 713–716. 1936.Google Scholar
  73. 72.
    French, C. S. The quantum yield of hydrogen and carbon dioxide assimilation in purple bacteria. Jour. Gen. Physiol.20: 711–735. 1937.CrossRefGoogle Scholar
  74. 73.
    —————. The rate of CO2 assimilation by purple bacteria at various wave lengths of light. Jour. Gen. Physiol.21: 71–87. 1937.CrossRefGoogle Scholar
  75. 74.
    —————. The chromoproteins of photosynthetic purple bacteria. Science88: 60–62. 1938.PubMedCrossRefGoogle Scholar
  76. 75.
    —————. The chromoproteins of photosynthetic bacteria. Jour. Biol. Chem.123: 38. 1938.Google Scholar
  77. 76.
    —————. The pigment-protein compound in photosynthetic bacteria. I. The extraction and properties of photosynthin. Jour. Gen. Physiol.23: 469–481. 1940.CrossRefGoogle Scholar
  78. 77.
    —————. The pigment-protein compound in photosynthetic bacteria. II. The absorption curves of photosynthin from several species of bacteria. Jour. Gen. Physiol.23: 483–494. 1940.CrossRefGoogle Scholar
  79. 78.
    Frober-Faybor Co. Cleveland, Ohio. Frober-Faybor photo-electric colorimeter.Google Scholar
  80. 79.
    Gaffron, H. Inwiefern ist Sauerstoff für die Kohlensäureassimilation der grünen Pflanzen unentbehrlich? Naturwiss.23: 528. 1935.CrossRefGoogle Scholar
  81. 80.
    —————. Über die Unabhängigkeit der Kohlensäureassimilation der grünen Pflanzen von der Anwesenheit kleiner Sauerstoffmengen und über eine reversible Hemmung der Assimilation durch Kohlenoxyd. Biochem. Zeits.280: 337–359. 1935.Google Scholar
  82. 81.
    —————. Chemical aspects of photosynthesis. Ann. Rev. Biochem.8: 483–501. 1939.CrossRefGoogle Scholar
  83. 82.
    Ghosh, J. C., andSen-Gupta, S. B. Studies in the optical properties of chlorophyll. I. Absorption of light by solutions and suspensions of chlorophyll-α and chlorophyll-β and their mixtures. Jour. Indian. Chem. Soc.8: 581–589. 1931.Google Scholar
  84. 83.
    Gillam, A. E. Spectrometric measurements on various carotenoids, Biochem. Jour.29: 1831–1836. 1935.Google Scholar
  85. 84.
    ————— On the occurrence and constitution of the 693 mµ chromogen (vitamins A2?) in fish liver oils, Biochem. Jour.32: 405–416. 1938.Google Scholar
  86. 85.
    —— —— The isomerization of carotene by means of antimony trichloride. Biochem. Jour.26: 1174–1177. 1932.Google Scholar
  87. 86.
    ————— Adsorption of grass and butter carotenes on alumina. Nature136: 914–915. 1935.CrossRefGoogle Scholar
  88. 87.
    —————. The isomerization of carotenes by chromatographic adsorption. I. Pseudo-α-carotene. Biochem. Jour.30: 1735–1742. 1936.Google Scholar
  89. 88.
    —————. The variation of the extinction coefficient of vitamin A with solvent. Biochem. Jour.32: 820–825. 1938.Google Scholar
  90. 89.
    —— —— The isomerization of carotenes by chromatographic adsorption. II. Neo-α-carotene. Biochem. Jour.31: 1605–1610. 1937.Google Scholar
  91. 90.
    Goldblatt, H., andBarnett, H. M. Carotene and vitamin A. Proc. Soc. Exp. Biol. & Med.30: 201–204. 1932.Google Scholar
  92. 91.
    Guilbert, H. R. Determination of carotene as a means of estimating the vitamin A value of forage. Ind. Eng. Chem., Anal. Ed.6: 452–453. 1934.CrossRefGoogle Scholar
  93. 92.
    Guthrie, J. D. A stable colorimetric standard for chlorophyll determinations. Amer. Jour. Bot.15: 86–87. 1928.CrossRefGoogle Scholar
  94. 93.
    —————. Effect of environmental conditions on the chloroplast pigments. Amer. Jour. Bot.16: 716–746. 1929.CrossRefGoogle Scholar
  95. 94.
    Hagenbach, A., Auerbacher, F., andWiedemann, E. Zur Kenntnis der Lichtabsorption von Porphinfarbstoffen und über einige mögliche Beziehungen derselben zu ihrer Konstitution. Helvetica Phys. Acta9: 3–26. 1936.Google Scholar
  96. 95.
    Hand, D. B., andSharp, P. F. Rapid photoelectric determination of carotenoid in milk fat. Jour. Dairy Sci.22: 729–735. 1939.CrossRefGoogle Scholar
  97. 96.
    Hanson, E. A. Notes on some physical properties of chlorophyll films. Proc. Kon. Ak. Amst.40: 281–284. 1937.Google Scholar
  98. 97.
    ————— A note on the chlorophyll-contents of the granum. Chron. Bot.4: 104–105. 1938.Google Scholar
  99. 98.
    Harriman, P. A. Effect of various methods of storage on chlorophyll content of leaves. Pl. Physiol.5: 599–606. 1930.Google Scholar
  100. 99.
    Hausser, K. W., Kuhn, R., andSeitz, G. Lichtabsorption und Doppel-bindung V. Über die Absorption von Verbindungen mit konjugierten Kohlenstoffdoppelbindungen bei tiefer Temperatur. Zeits. Physik. Chemie (B)29: 391–416. 1935.Google Scholar
  101. 100.
    ————— Lichtabsorption und Doppelbindung I. Aufgaben und Methoden. Zeits. Physik. Chemie (B)29: 363–370. 1935.Google Scholar
  102. 101.
    Heierle, E. Blattfarbstoffuntersuchungen an einer grün- und gelbblättrigen Tabakvarietät. Ber. Schweiz. Bot. Ges.44: 17–86. 1935.Google Scholar
  103. 102.
    Heilbron, I. M., Johnson, A. W., andJones, W. E. Studies in the polyene series. Part IV. Jour. Chem. Soc.330: 1560–1563. 1939.CrossRefGoogle Scholar
  104. 103.
    ————— Studies in the polyene series. Part II. Jour. Chem. Soc.328: 1554–1556. 1939.CrossRefGoogle Scholar
  105. 104.
    Hellström, H., andBurström, D. Über das Komponentenverhältnis des Chlorophylls in chlorophylldefekten Mutanten. Biochem. Zeits.258: 221–227. 1933.Google Scholar
  106. 105.
    Henrici, M. Eleventh report of director of veterinary education and research. Part I. Dept. Agr., Union So. Afr. p. 259. 1927.Google Scholar
  107. 106.
    Hickman, K. C. D. Molecular distillation. State of the vitamins in certain fish liver oils. Ind. Eng. Chem.29: 1107–1111. 1937.CrossRefGoogle Scholar
  108. 107.
    Hicks, P. A., andPanisset, T. E. The quantitative determination of minute amounts of chlorophyll. New Phytol.33: 199–210. 1934.CrossRefGoogle Scholar
  109. 108.
    Hilbert, G. E., andJansen, E. F. A study of the absorption spectra of some carotenoid pigments at liquid air temperatures and its applications to the carotenoid pigments of cow-pea leaves (Vigna sinensis). Jour. Biol. Chem.106: 97–105. 1934.Google Scholar
  110. 109.
    Hilpert, S., andHofmeier, H. Über dem örtlichen Nachweis und die quantitative Bestimmung von Chlorophyll in Pflanzenteilen. Ber.66B: 1443–1445. 1933.Google Scholar
  111. 110.
    Hodgson, R. E. The relation of color and carotene content of roughage in the dairy ration to the color, carotene content, and vitamin A activity of butterfat. Jour. Agr. Res.57: 513–528. 1938.Google Scholar
  112. 111.
    Holmes, H. N., andBromund, W. H. Bixin solutions as colorimetric standards for the determination of carotene. Jour. Biol. Chem.112: 437–441. 1936.Google Scholar
  113. 112.
    ————— The isolation of crystalline vitamin A. Jour. Am. Chem. Soc.59: 2042–2047. 1937.CrossRefGoogle Scholar
  114. 113.
    ————— Comparative studies on the adsorption behavior of crude vitamin A, carotene, and cholesterol. Jour. Biol. Chem.99: 417–427. 1933.Google Scholar
  115. 114.
    Hubert, B. On the photodecomposition of chlorophyll. Proc. Kon. Ak. Amst.37: 684–687. 1934.Google Scholar
  116. 115.
    —————. Estimation of the band position of chlorophyll in different media. Proc. Kon. Ak. Amst.37: 695–700. 1934.Google Scholar
  117. 116.
    —————. The physical state of chlorophyll in the living plastid. Rec. Trav. Bot. Néerl.32: 323–390. 1935.Google Scholar
  118. 117.
    Ireland, J. C. Heritable variations in chlorophyll. Pl. Physiol.13: 863–865. 1938.Google Scholar
  119. 118.
    Johnson, I. J., andMiller, Elmer S. Variation in carotenoid pigment concentration among inbred and crossbred strains of corn. Cereal Chemistry15: 345–350. 1938.Google Scholar
  120. 119.
    —————. Immediate effect of cross pollination on the carotenoid pigments in the endosperm of maize. Cereal Chemistry16: 88–92. 1939.Google Scholar
  121. 120.
    —————. Leaf pigment concentration and its relation to yield in Fairway Crested wheat grass and Parkland Brome grass. Jour. Amer. Soc. Agron.32: 302–307. 1940.Google Scholar
  122. 121.
    Johnston, E. S. Phototropic sensitivity in relation to wave length. Smithsonian Misc. Coll.92(11): 1–17. 1934.Google Scholar
  123. 122.
    ————— The determination of small amounts of chlorophyll—Apparatus and method. Smithsonian Misc. Coll.98(19): 1–5. 1939.Google Scholar
  124. 123.
    Joslyn, M. A., andMackinney, G. The rate of conversion of chlorophyll to pheophytin. Jour. Am. Chem. Soc.60: 1132–1136. 1938.CrossRefGoogle Scholar
  125. 124.
    Kar, B. K. Über das Verhalten der Plastidfarbstoffe photoperiodisch reagierender Pflanzen bei verschiedenem Lichtgenuss. Planta26: 420–462. 1937.CrossRefGoogle Scholar
  126. 125.
    Karrer, P. Chemistry of vitamins A and C. Chem. Rev.14: 17–30. 1934.CrossRefGoogle Scholar
  127. 126.
    ————— Die Carotinoide der Purpurbakterien. I. Helvet. Chim. Acta18: 1306–1315. 1935.CrossRefGoogle Scholar
  128. 127.
    —————. Die Carotinoide der Purpurbakterien. II. Über Rhodoviolascin. Helv. Chim. Acta19: 3–5. 1936.CrossRefGoogle Scholar
  129. 128.
    —————. Carotinoide aus Purpurbakterien. III. Helv. Chim. Acta19: 1019–1024. 1936.CrossRefGoogle Scholar
  130. 129.
    ————— Eigenschaftenkolloider Carotinlösungen. Helv. Chim. Acta21: 1624–1636. 1938.CrossRefGoogle Scholar
  131. 130.
    Katz, E., andWassink, E. C. Infrared absorption spectra of chlorophyllous pigments in living cells and in extra-cellular states. Enzymol.7: 97–112. 1939.Google Scholar
  132. 131.
    Kautsky, H. Die Wechselwirkung zwischen Sensibilisatoren und Sauerstoff im Licht. Biochem. Zeits.291: 271–284. 1937.Google Scholar
  133. 132.
    ————— Neue Messungen der Fluorescenz—Intensitäts—Änderungen grüner Pflanzen. Naturwiss.26: 576–577. 1938.CrossRefGoogle Scholar
  134. 133.
    ————— Energie-Umwandlungen an Grenzflächen. VI. Mitteil: Kohlensäure-Assimilation. Ber.65: 1762–1770. 1932.Google Scholar
  135. 134.
    —————. Chlorophyllfluoreszenz und Kohlensäureassimilation. I. Das Fluoreszenzverhalten grüner Pflanzen. Biochem. Zeits.274: 423–434. 1934.Google Scholar
  136. 135.
    —————. Chlorophyllfluoreszenz und Kohlensäureassimilation. II. Mitteilung: 1. Apparatur zur vergleichenden Messung der Fluoreszenzänderungen lebender Blätter. 2. Der Einfluss der Temperatur auf die Fluoreszenzkurve. Biochem. Zeits.274: 435–451. 1934.Google Scholar
  137. 136.
    —————. Chlorophyllfluoreszenz und Kohlensäureassimilation. III. Mitteilung: Der Einfluss der Kohlensäure auf das Fluoreszenz-Verhalten lebender Blätter. Biochem. Zeits.277: 250–260. 1935.Google Scholar
  138. 137.
    —————. Chlorophyllfluoreszenz und Kohlensäureassimilation. IV. Mitteilung: Der Einfluss des Sauerstoffs auf das Fluoreszenzverhalten lebender Blätter. Biochem. Zeits.278: 373–385. 1935.Google Scholar
  139. 138.
    —————. Chlorophyllfluoreszenz und Kohlensäureassimilation. V. Mitteilung: Beziehungun zwischen Blattfluoreszenz und Sauerstoffkonzentration. Biochem. Zeits.284: 412–436. 1936.Google Scholar
  140. 139.
    —————. Chlorophyllfluoreszenz und Kohlensäureassimilation. VI. Mitteilung: Photographische Registrierung und Auswertung der Fluoreszensintensität-Zeitkurven grünen Blätter. Biochem. Zeits.290: 248–260. 1937.Google Scholar
  141. 140.
    —————. Chlorophyllfluoreszenz und Kohlensäureassimilation. VII. Mitteilung: Die Abhängigkeit des Verlaufs der Fluoreszenzkurven grünen Blätter von Sauerstoffdruck. Biochem. Zeits.291: 285–311. 1937.Google Scholar
  142. 141.
    Ketelaar, J. A. A., andHanson, E. A. Elementary cell and space group of ethylchlorophyllide. Nature140: 196. 1937.CrossRefGoogle Scholar
  143. 142.
    Keuffel, C. W. A direct reading spectrophotometer. Jour. Opt. Soc. Am.11: 403–410. 1925.Google Scholar
  144. 143.
    Klein, G. Handbuch der Pflanzenanalyse III’ 2 Spezielle Analyse II. 1932.Google Scholar
  145. 144.
    Knorr, H. V., andAlbers, V. M. Fluorescence of solution of chlorophylla. Phys. Rev.43: 379. 1933.Google Scholar
  146. 145.
    —————. Fluorescence and photodecomposition in solutions of chlorophyllb. Phys. Rev.46: 336. 1934.Google Scholar
  147. 146.
    —————. Fluorescence of the chlorophyll series: Fluorescence and photodecomposition of solutions of chlorophylla under O2, CO2 and N2. Phys. Rev.49: 420. 1936.Google Scholar
  148. 147.
    Koehn, C. J., andSherman, W. C. The determination of vitamin A and carotene with the photoelectric colorimeter. Jour. Biol. Chem.132: 527–538. 1940.Google Scholar
  149. 148.
    Kohn, H. I. Number of chlorophyll molecules acting as an absorbing unit in photosynthesis. Nature.137: 706–707. 1936.CrossRefGoogle Scholar
  150. 149.
    Kuhn, R. Preparation of isomeric carotenes and their biological effects. Chemistry at the Centenary (1931) Meeting of the British Association for the Advancement of Science. (1932) pp. 108–112.Google Scholar
  151. 150.
    ————— γ-Carotin (Über das Vitamin des Wachstums, IV. Mitteil.). Ber.66: 407–410. 1933.Google Scholar
  152. 151.
    —————. Über Rhodo-xanthin, den Arillus-farbstoff der Eibe (Taxus baccata). Ber.66: 828–841. 1933.Google Scholar
  153. 152.
    —————. Bestimmung von Carotinoiden. Zeits. Physiol. Chem.206: 41–64. 1932.Google Scholar
  154. 153.
    ————— Über Krypto-xanthin, ein Xanthophyll der Formel C40H56O (Über das Vitamin des Wachstums, V. Mitteil.). Ber.66: 1746–1750. 1933.Google Scholar
  155. 154.
    —————. Über Rubixanthin, ein neues Xanthophyll der Formel C46H56O. Ber.67: 339–344. 1934.Google Scholar
  156. 155.
    ————— Taraxanthin, ein neues Xanthophyll mit 4 Sauerstoffatomen. Zeits. Physiol. Chemie200: 108–114. 1931.Google Scholar
  157. 156.
    ————— Synthese von Vitamin A. Ber.70: 853–858. 1937.Google Scholar
  158. 157.
    ————— Spektrophotometrische Analyse des Eidotterfarbstoffes. Zeits. Physiol. Chemie197: 161–166. 1931.Google Scholar
  159. 158.
    ————— Viola-xanthin, das Xanthophyll des gelben Stiefmutterchens (Viola tricolor). (Über konjugierte Doppelbindungen, XVI). Ber.64: 326–332. 1931.Google Scholar
  160. 159.
    ————— Zur Kenntnis der. Xanthophylle. Zeits. Physiol. Chemie197: 141–160. 1931.Google Scholar
  161. 160.
    Lederer, E., andRathmann, F. H. A physico-chemical and biochemical study of vitamin A2. Biochem. Jour.32: 1252–1261. 1938.Google Scholar
  162. 161.
    Lewis, G. N., andCalvin, M. The color of organic substances. Chem. Rev.25: 273–328. 1939.CrossRefGoogle Scholar
  163. 162.
    Lewkowitsch, E. The ultra-violet absorption spectrum of chlorophyll in alcoholic solution. Biochem. Jour.22: 777–778. 1928.Google Scholar
  164. 163.
    Lubimenko, V. N., andGortikowa, N. N. Über die Rolle des Sauerstoffs im Ergrünungsprosess. Beitr. Biol. Pflanz.22: 235–272. 1934.Google Scholar
  165. 164.
    ————— The influence of temperature on the rate of accumulation of chlorophyll in etiolated seedlings. New Phytol.31: 26–57. 1932.CrossRefGoogle Scholar
  166. 165.
    Luxtrol Co., Inc. New York. Photoelectric colorimeter.Google Scholar
  167. 166.
    Mackinney, G. On the crystal structure of carotenoids. Jour. Am. Chem. Soc.56: 488. 1934.CrossRefGoogle Scholar
  168. 167.
    —————. Leaf carotenes. Jour. Biol. Chem.111: 75–84. 1935.Google Scholar
  169. 168.
    —————. On the plastid pigments of marsh dodder. Jour. Biol. Chem.112: 421–424. 1935.Google Scholar
  170. 169.
    —————. Some absorption spectra of leaf extracts. Pl. Physiol.13: 123–140. 1938.CrossRefGoogle Scholar
  171. 170.
    —————. Applicability of Kundt’s rule to chlorophyll. Pl. Physiol.13: 427–430. 1938.Google Scholar
  172. 171.
    —————. Kundt’s rule. Pl. Physiol.15: 359. 1940.Google Scholar
  173. 172.
    —————. Criteria for purity of chlorophyll preparations. Jour. Biol. Chem.132: 91–109. 1940.Google Scholar
  174. 173.
    —————. Plant pigments. Ann. Rev. Biochem.9: 459–486. 1940.CrossRefGoogle Scholar
  175. 174.
    ————— Carrot leaf carotene. Jour. Am. Chem. Soc.55: 4728–4729. 1933.CrossRefGoogle Scholar
  176. 175.
    Manning, W. M. Photosynthesis. Jour. Phys. Chem.42: 815–852. 1938.CrossRefGoogle Scholar
  177. 176.
    Matlack, M. B. Pigments of pink grapefruits,Citrus grandis (L, Osbeck). Jour. Biol. Chem.110: 249–253. 1935.Google Scholar
  178. 177.
    ————— A contribution to the chemistry of tomato pigments. The coloring matter in American red and purple tomatoes (Lycopersicum esculentum). Jour. Biol. Chem.104: 407–414. 1934.Google Scholar
  179. 178.
    McAlister, E. D. The chlorophyll-carbon dioxide ratio during photosynthesis. Jour. Gen. Physiol.22: 613–637. 1939.CrossRefGoogle Scholar
  180. 179.
    McNicholas, H. J. The visible and ultra-violet absorption spectra of carotin and xanthophyll and the changes accompanying oxidation. Bur. Stand. Jour. Res.7: 171–193. 1931.Google Scholar
  181. 180.
    Mead, T. H., Underhill, S. W. F., andCoward, K. H. Crystalline esters of vitamin A. I. Preparation and properties. II. Biological potency. Biochem. Jour.33: 589–600. 1939.Google Scholar
  182. 181.
    Mellon, M. G. The role of spectrophotometry in colorimetry. Ind. Eng. Chem., Anal. Ed.9: 51–56. 1937.CrossRefGoogle Scholar
  183. 182.
    Menke, W. Untersuchungen über das Protoplasma grüner Pflanzenzellen. II. Der Chlorophyllgehalt der Chloroplasten aus Spinatblättern. Zeits. Physiol. Chemie263: 100–103. 1940.Google Scholar
  184. 183.
    Meyer, K. P. Spektrometrische Untersuchungen über den Zustand des Chlorophylls in der Pflanze, in Extrakten und Reinpräparaten. Helv. Phys. Acta12: 349–393. 1939.Google Scholar
  185. 184.
    Michael, G. Über die Beziehungen zwischen Chlorophyll- und Eiweissabbau im vergilbenden Laubblatt vonTropaeolum. Zeits. Bot.29: 385–424. 1935.Google Scholar
  186. 185.
    Miller, E. S. Absorption spectra of alpha and beta carotenes and leaf xanthophyll at room and liquid nitrogen temperatures. Pl. Physiol.9: 179. 1934.Google Scholar
  187. 186.
    —————. Application of quantitative spectral analyses to binary mixtures of the common carotenoids. Pl. Physiol.9: 681–684. 1934.Google Scholar
  188. 187.
    —————. A rapid and accurate quantitative method for the determination of the common carotenoids; analyses of beta-carotene and leaf xanthophyll in thirteen plant tissues. Jour. Am. Chem. Soc.57: 347–349. 1935.CrossRefGoogle Scholar
  189. 188.
    —————. Improved methods for the purification of the common carotenoids, and the quantitative measurement of their absorption spectra. Bot. Gaz.96: 447–467. 1935.CrossRefGoogle Scholar
  190. 189.
    —————. A precise method, with detailed calibration for the determination of absorption coefficients; the quantitative measurement of the visible and ultraviolet absorption spectra of alpha carotene, beta carotene, and lycopene. Pl. Physiol.12: 667–684. 1937.Google Scholar
  191. 190.
    —————. Photoelectric spectrophotometry applied to the quantitative analyses of carotenoid and chlorophyll pigments in ternary and quaternary systems. Cereal Chemistry15: 310–316. 1938.Google Scholar
  192. 191.
    -----. Quantitative biological spectroscopy. 1939.Google Scholar
  193. 192.
    ————— The relation between leaf tissue pigment concentration and yield in corn. Jour. Amer. Soc. Agron.30: 941–946. 1938.Google Scholar
  194. 193.
    —————. Inheritance of chlorophyll in F1 crosses made reciprocally between selfed lines of corn. Proc. Soc. Exp. Biol. & Med.44: 26–28. 1940.Google Scholar
  195. 194.
    ————— Jr. Absorption spectra of alpha and beta carotenes and lycopene. Pl. Physiol.10: 375–381. 1935.Google Scholar
  196. 195.
    Montfort, C. Farbe und Stoffgewinn im Meer. Jahrb. Wiss. Bot.79: 493–592. 1934.Google Scholar
  197. 196.
    Müller, R. H. Photoelectric methods in analytical chemistry. Ind. Eng. Chem., Anal. Ed.11: 1–17. 1939.CrossRefGoogle Scholar
  198. 197.
    Mulliken, R. S. Intensities of electronic transitions in molecular spectra. IV. Cyclic dienes and hyperconjugation. Jour. Chem. Phys.7: 339–352. 1939.CrossRefGoogle Scholar
  199. 198.
    —————. Intensities of electronic transitions in molecular spectra. VII. Conjugated polyenes and carotenoids. Jour. Chem. Phys.7: 364–373. 1939.CrossRefGoogle Scholar
  200. 199.
    Munsey, V. E. Application of the neutral wedge photometer to the measurement of carotenoid pigments in flour and macaroni products. Jour. Assoc. Off. Agr. Chem.21: 331–351. 1938.Google Scholar
  201. 200.
    Myers, J. A study of the pigments produced in darkness by certain green algae. Pl. Physiol.15: 575–588. 1940.Google Scholar
  202. 201.
    Nicolai, M. F. E., andWeurman, C. Some properties of chlorophyllmultifilms. Proc. Kon. Ak. Amst.41: 904–908. 1938.Google Scholar
  203. 202.
    Noack, K. Der Zustand des Chlorophylls in der lebenden Pflanze. Biochem. Zeits.183: 135–152. 1927.Google Scholar
  204. 203.
    ————— Zur Entstehung des Chlorophylls und seiner Beziehung zum Blutfarbstoff. Zeits. Physiol. Chemie182: 13–49. 1929.Google Scholar
  205. 204.
    —————. Zur Kenntnis der Chlorophyllbildung. Zeits. Ang. Chemie44: 93–96. 1931.CrossRefGoogle Scholar
  206. 205.
    Oltman, R. E. A new method and instrument for the quantitative determination of chlorophyll. Pl. Physiol.8: 321–326. 1933.Google Scholar
  207. 206.
    Padoa, M., andVita, N. Über die Wirkung von Kohlenoxyd auf frische Pflanzen. Untersuchungen über die Absorptionsspektra der Chlorophyllea undb in Gegenwart von CO, N2, O2, CO2. Biochem. Zeits.244: 296–302. 1932.Google Scholar
  208. 207.
    Pauling, L. The significance of resonance to the nature of the chemical bond and the structure of molecules. Organic Chemistry: pp. 1850–1890. Gilman, H.Google Scholar
  209. 208.
    -----. The nature of the chemical bond. 1939.Google Scholar
  210. 209.
    Petering, H. G., Wolman, W., andHibbard, R. P. Determination of chlorophyll and carotene in plant tissue. Ind. Eng. Chem., Anal. Ed.12: 148–151. 1940.CrossRefGoogle Scholar
  211. 210.
    Peterson, P. D. Methods for the quantitative extraction and separation of the plastid pigments-of tobacco. Pl. Physiol.5: 257–261. 1930.Google Scholar
  212. 211.
    ————— The influence of four mosaic diseases on the plastid pigments and chlorophyllase in tobacco leaves. Phytopath.28: 329–342. 1938.Google Scholar
  213. 212.
    ————— Determination of carotene in forage. Ind. Eng. Chem., Anal. Ed.9: 71–72. 1937.CrossRefGoogle Scholar
  214. 213.
    -----, -----,and Payne, L. F. The carotenoid pigments. Occurrence, properties, methods of determination, and metabolism by the hen. Tech. Bull. 46. Kan. Agr. Exp. Sta. 1939.Google Scholar
  215. 214.
    Pfaltz and Bauer, Inc. New York. Photoelectric colorimeter, after Lange.Google Scholar
  216. 215.
    Photovolt Corp. New York. Lumetron photoelectric colorimeter.Google Scholar
  217. 216.
    -----. Small-spot photometer.Google Scholar
  218. 217.
    Porret, D., andRabinowitch, E. Reversible bleaching of chlorophyll. Nature140: 321–322. 1937.CrossRefGoogle Scholar
  219. 218.
    Prins, J. A. Spectrum of chlorophyll. Nature134: 457. 1934.CrossRefGoogle Scholar
  220. 219.
    Quackenbush, F. W., Steenbock, H. andPeterson, W. H. The effect of acids on carotenoids. Jour. Am. Chem. Soc.60: 2937–2941. 1939.CrossRefGoogle Scholar
  221. 220.
    Rabinowitch, E., andWeiss, J. Reversible oxidation of chlorophyll. Proc. Roy. Soc. (London) A,162: 251–267. 1937.Google Scholar
  222. 221.
    Randolph, L. F., andHand, D. B. Relation between carotenoid content and number of genes per cell in diploid and tetraploid corn. Jour. Agr. Res.60: 51–64. 1940.Google Scholar
  223. 222.
    Rudolph, H. Über die Einwirkung des farbigen Lichtes auf die Entstehung der Chloroplasten Farbstoffe. Planta21: 104–155. 1933.CrossRefGoogle Scholar
  224. 223.
    Russell, W. C., Taylor, M. W., andChichester, D. F. The effect of the curing process upon the carotene and vitamin A content of alfalfa. N. J. Agr. Expt. Sta. Bull.560: 1–8. 1932.Google Scholar
  225. 224.
    Sargent, M. C. Causes of color change in blue-green algae. Proc. Nat. Acad. Sci.20: 251–254. 1934.PubMedCrossRefGoogle Scholar
  226. 225.
    —————. Effect of light intensity on the development of the photosynthetic mechanism. Pl. Physiol.15: 275–290. 1940.Google Scholar
  227. 226.
    Scharfnagel, W. Biologische Untersuchungen zur Chlorophyllbildung. Planta13: 716–744. 1931.CrossRefGoogle Scholar
  228. 227.
    Schertz, F. M. The quantitative determination of carotin by means of the spectrophotometer and the colorimeter. Jour. Agr. Res.26: 383–400. 1923.Google Scholar
  229. 228.
    —————. The quantitative determination of xanthophyll by means of the spectrophotometer and the colorimeter. Jour. Agr. Res.30: 253–261. 1925.Google Scholar
  230. 229.
    —————. Some physical and chemical properties of carotene and the preparation of the pure pigment. Jour. Agr. Res.30: 469–474. 1925.Google Scholar
  231. 230.
    —————. Some physical and chemical properties of xanthophyll and the preparation of the pure pigment. Jour. Agr. Res.30: 575–585. 1925.Google Scholar
  232. 231.
    —————. The quantitative determination of chlorophyll. Pl. Physiol.3: 323–334. 1928.Google Scholar
  233. 232.
    —————. The extraction and separation of chlorophyll (α + β) carotin and xanthophyll in fresh green leaves, preliminary to their quantitative determination. Pl. Physiol.3: 211–216. 1928.Google Scholar
  234. 233.
    —————. The preparation of chlorophyll. Pl. Physiol.3: 487–497. 1928.Google Scholar
  235. 234.
    Scheunert, A., andWagner, K. H. Untersuchung von Aphanin und Aphanicin auf Vitamin A-Wirkung. Zeits. Physiol. Chemie260: 272–275. 1939.Google Scholar
  236. 235.
    Seybold, A. Über die Lichtenergiebilanz submerser Wasserpflanzen, vornehmlich der Meeresalgen. Jahrb. Wiss. Bot.79: 593–654. 1934.Google Scholar
  237. 236.
    —————. Zur Kenntnis des Protochlorophylls. Planta26: 712–718. 1937.CrossRefGoogle Scholar
  238. 237.
    ————— Lichtfeld und Blattfarbstoffe. I. Planta26: 491–515. 1937.CrossRefGoogle Scholar
  239. 238.
    —————. Lichtfeld und Blattfarbstoffe. II. Planta28: 87–123. 1938.CrossRefGoogle Scholar
  240. 239.
    —————. Zur chromatographischen Methode der Blattpigmente. Planta29: 114–118. 1938.CrossRefGoogle Scholar
  241. 240.
    —————. Zur Kenntnis des Protochlorophylls. II. Planta29: 119–129. 1938.CrossRefGoogle Scholar
  242. 241.
    —————. Zur Kenntnis des Bakteriochlorophylls. Sitzungsb. Heidelb. Akad. Wiss.1: 7–17. 1939.Google Scholar
  243. 242.
    Sherman, W. C. Chromatographic identification and biological evaluation of carotene from mature soybeans. Food Res.5: 13–22. 1940.Google Scholar
  244. 243.
    ————— Carotene content of different varieties of green and mature soybeans and cowpeas. Food Res.4: 371–380. 1939.Google Scholar
  245. 244.
    Shrewsbury, C. L., andKraybill, H. R. The carotene content, vitamin A potency, and antioxidants of butter fat. Jour. Biol. Chem.101: 701–709. 1933.Google Scholar
  246. 245.
    —————, ————— Determination of alphaand beta-carotenes. Ind. Eng. Chem. Anal. Ed.10: 253–256. 1938.CrossRefGoogle Scholar
  247. 246.
    Singh, B. N., andRao, N. K. A. A new method for the detection of carotenoids in chlorophyll samples. Protoplasma30: 101–103. 1938.CrossRefGoogle Scholar
  248. 247.
    Sjøberg, J. Beitrag zur Kenntnis der Bildung des Chlorophylls und der gelben Pflanzenpigmente. Biochem. Zeits.240: 156–186. 1931.Google Scholar
  249. 248.
    Smakula, A. Über physikalische Methoden im chemischen Laboratorium. XXII. Lichtabsorption und chemische Konstitution. Zeits. Ang. Chemie47: 657–665. 1934.Google Scholar
  250. 249.
    Smith, E. Solutions of chlorophyll-protein compounds (phyllochlorins) extracted from spinach. Science88: 170–171. 1938.PubMedCrossRefGoogle Scholar
  251. 250.
    Smith, J. H. C. Carotene. III. Hydrogenation and optical properties of carotene and its hydrogenated derivatives. Jour. Biol. Chem.90: 597–605. 1931.Google Scholar
  252. 251.
    -----. The yellow pigments of green leaves: their chemical constitution and possible function in photosynthesis. Cont. Marine Biology. Stanford Univ. Press. 1930.Google Scholar
  253. 252.
    —————. Carotene. X. A comparison of absorption spectra measurements on α-carotene, β-carotene and lycopene. Jour. Am. Chem. Soc.58: 247–255. 1936.CrossRefGoogle Scholar
  254. 253.
    ————— Carotene. VII. Physical properties of carotene from different plant sources. Jour. Biol. Chem.104: 437–447. 1934.Google Scholar
  255. 254.
    Smith, L. L. W., andMorgan, A. F. The effect of light upon the vitamin A activity and the carotenoid content of fruits. Jour. Biol. Chem.101: 43–54. 1933.Google Scholar
  256. 255.
    Smith, O. Effects of light on carotenoid formation in tomato fruits. Cornell Univ. Agr. Expt. Sta. Mem.187: 3–26. 1935.Google Scholar
  257. 256.
    Spoehr, H. A., Smith, J. H. C., Strain, H. H., and Milner, H. W. Ann. Rep. Div. Pl. Bio., Carnegie Inst. Wash. 1935, 1936, 1937.Google Scholar
  258. 257.
    Sprague, H. B. A convenient method of measuring quantities of chloroplast pigments. Science67: 167–169. 1928.PubMedCrossRefGoogle Scholar
  259. 258.
    ————— Chlorophyll content as an index of the productive capacity of selfed lines of corn and their hybrids. Jour. Amer. Soc. Agron.25: 709–723. 1933.Google Scholar
  260. 259.
    ————— A study of the relations between chloroplast pigments and dry weight of tops in dent corn. Pl. Physiol.4: 165–192. 1929.Google Scholar
  261. 260.
    ————— An improved color standard for the colorimetric determination of chlorophyll. Science71: 666–667. 1930.PubMedCrossRefGoogle Scholar
  262. 261.
    Stair, R., andCoblentz, W. W. Infrared absorption spectra of some plant pigments. Bur. Stand. Jour. Res.11: 703–711. 1933.Google Scholar
  263. 262.
    Staudiger, H., andSteinhofer, A. Über hochpolymere Verbindungen, 105. Mitteil: Viskositätsmessungen an Carotinoiden. Ber.68: 471–473. 1935.Google Scholar
  264. 263.
    Steele, C. C. Recent progress in determining the chemical structure of chlorophyll. Chem. Rev.20: 1–37. 1937.CrossRefGoogle Scholar
  265. 264.
    Stern, A., et al. Über die Lichtabsorption der Porphyrine. I. Zeits. Physik. Chemie (A)170: 337–350. 1934.Google Scholar
  266. 265.
    ————— Über die Lichtabsorption der Porphyrine. II. Zeits. Physik. Chemie (A)174: 81–103. 1935.Google Scholar
  267. 266.
    ————— Über die Lichtabsorption der Porphyrine. III. Zeits. Physik. Chemie (A)174: 321–334. 1935.Google Scholar
  268. 267.
    ————— Über die Lichtabsorption der Porphyrine. IV. Zeits. Physik. Chemie (A)175: 405–437. 1936.Google Scholar
  269. 268.
    ————— Über die Lichtabsorption der Porphyrine. V. Zeits. Physik. Chemie (A)176: 81–124. 1936.Google Scholar
  270. 269.
    ————— Über die Lichtabsorption der Porphyrine. VI. Zeits. Physik. Chemie (A)177: 40–81. 1936.Google Scholar
  271. 270.
    ————— Über die Lichtabsorption der Porphyrine. VII. Zeits. Physik. Chemie (A)177: 165–192. 1936.Google Scholar
  272. 271.
    ————— Über die Lichtabsorption der Porphyrine. VIII. Zeits. Physik. Chemie (A)177: 365–386. 1936.Google Scholar
  273. 272.
    ————— Über die Lichtabsorption der Porphyrine. IX. Zeits. Physik. Chemie (A)177: 387–397. 1936.Google Scholar
  274. 273.
    ————— Über die Lichtabsorption der Porphyrine. X. Zeits. Physik. Chemie (A)178: 161–183. 1937.Google Scholar
  275. 274.
    ————— Über die Lichtabsorption der Porphyrine. XI. Zeits. Physik. Chemie (A)179: 275–294. 1937.Google Scholar
  276. 275.
    ————— Über die Lichtabsorption der Porphyrine. XII. Zeits. Physik. Chemie (A)180: 131–138. 1937.Google Scholar
  277. 276.
    ————— Über die Absorptionsspektren der Pyrrolfarbstoffe. I. Zeits. Physik. Chemie (A)180: 25–43. 1937.Google Scholar
  278. 277.
    ————— Über die Absorptionsspektren der Pyrrolfarbstoffe. II. Zeits. Physik. Chemie (A)182: 117–126. 1938.Google Scholar
  279. 278.
    ————— Zur Fluorescenz der Porphyrine. I. Zeits. Physik. Chemie (A)175: 38–62. 1935.Google Scholar
  280. 279.
    ————— Zur Fluorescenz der Porphyrine. II. Zeits. Physik. Chemie (A)176: 209–225. 1936.Google Scholar
  281. 280.
    ————— Zur Fluorescenz der Porphyrine. III. Zeits. Physik. Chemie (A)176: 347–357. 1936.Google Scholar
  282. 281.
    ————— Zur Fluorescenz der Chlorine. Zeits. Physik. Chemie (A)182: 186–192. 1938.Google Scholar
  283. 282.
    ————— Zur Lichtabsorption der Imido-porphyrine. Zeits. Physik. Chemie (A)178: 420–436. 1937.Google Scholar
  284. 283.
    —————, and ————— Lichtabsorption und Konstitution einiger Derivate der Chlorophylle. Zeits. Physik. Chemie (A)180: 321–358. 1937.Google Scholar
  285. 284.
    Stoll, A. Zusammenhänge zwischen der Chemie des Chlorophylls und seiner Funktion in der Photosynthese. Naturwiss.24: 1–16. 1936.CrossRefGoogle Scholar
  286. 285.
    ————— Die optische Aktivität des Chlorophylls. Helv. Chimie. Acta16: 307–314. 1933.CrossRefGoogle Scholar
  287. 286.
    —————, and ————— Chlorophyll. Forts. Chemie Organ. Nat.I: 159–254. 1938.Google Scholar
  288. 287.
    Strain, H. H. Carotene. VIII. Separation of carotenes by adsorption. Jour. Biol. Chem.105: 523–535. 1934.Google Scholar
  289. 288.
    ————— Carotene. IX. Carotenes from different sources and some properties of α- and β-carotene. Jour. Biol. Chem.111: 85–93. 1935.Google Scholar
  290. 289.
    ————— Formation of carotenoids and chlorophylls in etiolated barley seedlings exposed to red light. Pl. Physiol.13: 413–418. 1938.Google Scholar
  291. 290.
    -----. Leaf xanthophylls. Carnegie Inst. Wash. 1938.Google Scholar
  292. 291.
    Strott, A. Der Einfluss der Umweltbedingungen auf die Ausbildung der Chloroplastenfarbstoffe. Jahr. Wiss. Bot.86: 1–32. 1938.Google Scholar
  293. 292.
    Sumner, F. B., andFox, D. L. Studies of carotenoid pigments in fishes. II. Investigations of the effects of colored backgrounds and of ingested carotenoids on the xanthophyll content ofGirella nigricans. Jour. Exp. Zool.71: 101–123. 1935.CrossRefGoogle Scholar
  294. 293.
    Taylor, W. H. An X-ray examination of β-carotene. Zeits. Kristallogr.96: 150–154. 1937.Google Scholar
  295. 294.
    Tilden, J. E. A classification of the algae based on evolutionary development, with special reference to pigmentation. Bot. Gaz.95: 59–77. 1933.CrossRefGoogle Scholar
  296. 295.
    Tottingham, W. E., andDutton, H. J. The effect of spectral regions on the chlorophyll “A” to “B” ratio. Science87: 214. 1938.PubMedCrossRefGoogle Scholar
  297. 296.
    Tswett, M. Adsorptionsanalyse und chromatographische Methode. Anwendung auf die Chemie des Chlorophylls. Ber. Deut. Bot. Ges.24: 384–393. 1906.Google Scholar
  298. 297.
    van Niel, C. B., andArnold, W. The quantitative estimation of bacterio-chlorophyll. Enzymol.5: 244–250. 1938.Google Scholar
  299. 298.
    ————— Studies on the pigments of the purple bacteria. I. Arch. Mikrobiol.6: 219–229. 1935.CrossRefGoogle Scholar
  300. 299.
    von Bernegg, A. S., Heierle, E., andAlmasy, F. Spektrophotometrische Bestimmung von Chlorophylla, Chlorophyllb, Carotin and Xanthophyll. Biochem. Zeits.283: 45–52. 1935.Google Scholar
  301. 300.
    Wakkie, J. G. Notes on the possible structure of the chlorophyllgranules in the plastid. Proc. Kon. Ak. Amst.38: 1082–1086. 1935.Google Scholar
  302. 301.
    Wassink, E. C., et al. On the fluorescence of photosynthesizing cells. Enzymol.4: 254–268. 1937.Google Scholar
  303. 302.
    ————— On the relation between fluorescence and assimilation in photosynthesizing cells. Enzymol.5: 100–109. 1938.Google Scholar
  304. 303.
    ————— Theoretical considerations concerning the relation between chlorophyll fluorescence and photosynthesis in green plant cells. Enzymol.5: 110–118. 1938.Google Scholar
  305. 304.
    ————— The initial changes of chlorophyll-fluorescence inChlorella. Enzymol.6: 145–172. 1939.Google Scholar
  306. 305.
    ————— Infrared absorption spectra of various strains of purple bacteria. Enzymol.7: 113–129. 1939.Google Scholar
  307. 306.
    Watkins, W. E. Monthly variation in carotene content of two important range grasses,Sporobolus flexuosus andBouteloua eriopoda. Jour. Agr. Res.58: 695–699. 1939.Google Scholar
  308. 307.
    Weier, E. The structure of the chloroplast. Bot. Rev.4: 497–530. 1938.CrossRefGoogle Scholar
  309. 308.
    Wilkens-Anderson Co. Chicago, Ill. KWSZ photometer.Google Scholar
  310. 309.
    Wilson, J. N. A theory of chromatography. Jour. Am. Chem. Soc.62: 1583–1591. 1940.CrossRefGoogle Scholar
  311. 310.
    Willstätter, R., andStoll, A. Investigations on chlorophyll. Methods and results. Translated by Schertz, F. M. and Merz, A. R. The Science Press Printing Co. Lancaster, Pa. 1928.Google Scholar
  312. 311.
    Winterstein, A. Fraktionierung und Reindarstellung von Pflanzenstoffen nach dem Prinzip der chromatographischen Adsorptionsanalyse. (g) Chlorophylle. Handb. Pflanzenanalyse4: 1426–1432. 1933.Google Scholar
  313. 312.
    ————— Über ein Vorkommen von γ-carotin. Zeits. Physiol. Chemie219: 249–252. 1933.Google Scholar
  314. 313.
    ————— Fraktionierung und Reindarstellung organischer Substanzen nach dem Prinzip der chromatographischen Adsorptionsanalyse. III. Mitteilung: Gibt es ein Chlorophyllc? Zeits. Physiol. Chemie230: 139–145. 1934.Google Scholar
  315. 314.
    ————— Fraktionierung und Reindarstellung organischer Substanzen nach dem Prinzip der chromatographischen Adsorptionsanalyse. II. Mitteilung: Chlorophylle. Zeits. Physiol. Chemie220: 263–277. 1933.Google Scholar
  316. 315.
    Wiseman, H. G., Kane, E. A., Shinn, L. A., andCary, C. A. The carotene content of market hays and corn silage. Jour. Agr. Res.57: 635–669. 1938.Google Scholar
  317. 316.
    Zechmeister, L. Carotinoide. 1934.Google Scholar
  318. 317.
    -----,and Cholnoky, L. Die chromatographische Adsorptionsmethode. 1937.Google Scholar
  319. 318.
    —————, ————— Über die Isomerisierung des Zeaxanthins und Physaliens. Ber.72: 1678–1685. 1939.Google Scholar
  320. 319.
    —————, and ————— Zur Isomerisierung von Xanthophyllen. Ber.72: 2039–2041. 1939.Google Scholar
  321. 320.
    ————— Isomerization of carotenoids. Biochem. Jour.32: 1305–1311. 1938.Google Scholar
  322. 321.
    —————, and ————— Umkehrbare Isomerisierung von Carotinoiden durch Jod-Katalyse. Ber.72: 1340–1346. 1939.Google Scholar
  323. 322.
    Zimmerman, W. I., Tressler, D. K., andMaynard, L. A. Determination of carotene in fresh and frozen vegetables. I. Carotene content of green snap beans and sweet corn. Food Res.5: 93–101. 1940.Google Scholar
  324. 323.
    Zscheile, F. P. An improved method for the purification of chlorophylls A and B; quantitative measurement of their absorption spectra; evidence for the existence of a third component of chlorophyll. Bot. Gaz.95: 529–562. 1934.CrossRefGoogle Scholar
  325. 324.
    ————— A quantitative spectro-photoelectric analytical method applied to solutions of chlorophylls a and b. Jour. Physic. Chem.38: 95–102. 1934.CrossRefGoogle Scholar
  326. 325.
    ————— Investigation of the fluorescence spectra of chlorophylls A and B in ether solution. Protoplasma22: 513–517. 1935.CrossRefGoogle Scholar
  327. 326.
    ————— Toward a more quantitative photochemical study of the plant cell’s photosynthetic system. Cold Spring Harbor Symposia Quant. Bio.III: 108–116. 1935.Google Scholar
  328. 327.
    -----. Unpublished results. 1936.Google Scholar
  329. 328.
    ————— Influence of preparative procedure on the purity of chlorophyll components as shown by absorption spectra. Bot. Gaz.102: 463–481. 1941.CrossRefGoogle Scholar
  330. 329.
    ————— The precision and accuracy of a photoelectric method for comparison of the low light intensities involved in measurement of absorption and fluorescence spectra. Jour. Physical Chem.38: 1–11. 1934.CrossRefGoogle Scholar
  331. 330.
    ————— Microscope hot stage for determination of melting points. Application to carotenoid pigments. Ind. Eng. Chem., Anal. Ed.12: 436–438. 1940.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1941

Authors and Affiliations

  • F. P. Zscheile
    • 1
  1. 1.Department of Agricultural ChemistryPurdue University Agricultural Experiment StationLafayette

Personalised recommendations