The Botanical Review

, Volume 2, Issue 3, pp 97–172 | Cite as

The rôle of light in the life of plants II. The influence of light upon growth and differentiation

  • Paul R. Burkholder


Botanical Review Artificial Light Electric Light Thompson Inst Daily Light Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Adams, J. The effect on tomato, soy bean, and other plants of altering the daily period of light. Am. Jour. Bot. 11: 229–232. 1924.CrossRefGoogle Scholar
  2. 2.
    —. Some further experiments on the relation of light to growth. Am. Jour. Bot.12: 398–412. 1925.CrossRefGoogle Scholar
  3. 3.
    Allard, H. A. Response of the woody plantsHibiscus syriacus, Malvaviscus conzattii andBougainvillea glabra to length of day. Jour. Agr. Res.51: 27–34. 1935.Google Scholar
  4. 4.
    Almoslechner, Elfriede. Die Hefe als Indikator für Wuchsstoffe. Planta22: 515–542. 1934.CrossRefGoogle Scholar
  5. 5.
    Anderson, D. B. The structure of the walls of the higher plants. Bot. Rev.1: 52–75. 1935.CrossRefGoogle Scholar
  6. 6.
    Andrews, F. M. Etiolation. Proc. Indiana Acad. Sci.35: 180–181. 1925(26).Google Scholar
  7. 7.
    Arnold, W. The effect of ultra violet light on photosynthesis. Jour. Gen. Physiol.17: 135–143. 1933.CrossRefGoogle Scholar
  8. 8.
    Arthur, J. M. Some effects of radiant energy on plants. Jour. Optical Soc. Am. & Rev. Scient. Inst.18(3): 253–263. 1929.Google Scholar
  9. 9.
    —. Red pigment production in apples by means of artificial light sources. Contr. Boyce Thompson Inst. Plant Res.4: 1–18. 1932.Google Scholar
  10. 10.
    -. Artificial light and plant growth. Agr. Eng.13: 288–291. Also Boyce Thompson Inst. Plant Res. Prof. Paper 1(22): 212–221. 1932.Google Scholar
  11. 11.
    — andStewart, W. D. Relative growth and dry weight production of plant tissue under Mazda, neon, sodium, and mercuryvapor lamps. Contr. Boyce Thompson Inst. Plant Res.7: 119–130. 1935.Google Scholar
  12. 12.
    —,Guthrie, J. D. andNewell, J. M. Some effects of artificial climates on the growth and chemical composition of plants. Am. Jour. Bot.17: 416–482. 1930.CrossRefGoogle Scholar
  13. 13.
    — andStewart, W. D. Transpiration of tobacco plants in relation to radiant energy in the visible and infra red. Contr. Boyce Thompson Inst. Plant Res.5: 483–501. 1933.Google Scholar
  14. 14.
    Ashby, Eric. The interaction of factors in the growth ofLemna. III. The interrelationship of duration and intensity of light. Ann. Botany43: 333–354. 1929.Google Scholar
  15. 15.
    —. Studies in the inheritance of physiological characters. Ann. Botany46: 1007–1032. 1932.Google Scholar
  16. 16.
    — andOxley, T. A. The interaction of factors in the growth ofLemna. VI. An analysis of the influence of light intensity and temperature on the assimilation rate and the rate of frond multiplication. Ann. Botany49: 309–336. 1935.Google Scholar
  17. 17.
    Avery, G. S. Differential distribution of a phytohormone in the developing leaf ofNicotiana, and its relation to polarized growth. Bull. Torrey Bot. Club62: 313–330. 1935.CrossRefGoogle Scholar
  18. 18.
    Axentjev, B. N. Über die Rolle der Schalen von Samen und Früchten, die bei der Keimung auf Licht reagieren. Beih. Bot. Centralbl. (Abt. I)46: 119–202. 1929.Google Scholar
  19. 19.
    Baly, E. C. C. The kinetics of photosynthesis. Proc. Roy. Soc. London, B.117: 218–239. #804. 1935.Google Scholar
  20. 20.
    — andSemmens, E. S. The selective photochemical action of polarised light. Proc. Roy. Soc. London, B.97: 250–253. 1924.Google Scholar
  21. 21.
    Bates, C. G. andRoeser, Jacob. Light intensities required for growth of coniferous seedlings. Am. Jour. Bot.15: 185–194. 1928.CrossRefGoogle Scholar
  22. 22.
    Bayliss, W. M. Principles of general physiology. 882 pp. 1927.Google Scholar
  23. 23.
    Beikirch, H. Die Abhängigkeit der Protoplasmaströmung von Licht und Temperatur und ihre Bedingtheit durch andere Faktoren. Bot. Archiv.12: 389–445. 1925.Google Scholar
  24. 24.
    Bell, G. D. H. Preliminary experiments on vernalisation. Jour. Agr. Sci.25: 245–257. 1935.Google Scholar
  25. 25.
    Benedict, H. M. Effect of ultra-violet radiation on growth and on the calcium and phosphorus contents of plants. Bot. Gaz.96: 330–341. 1934.CrossRefGoogle Scholar
  26. 26.
    Berkley, E. E. Studies of the effects of different lengths of day, with variations in temperature, on vegetative growth and reproduction in cotton. Ann. Mo. Bot. Gard.18: 573–601. 1931.CrossRefGoogle Scholar
  27. 27.
    Bertrand, Gabriel etRosenblatt, M. Sur la teneur inégale en manganèse des feuilles vertes et des feuilles étiolées. Compt. Rend. Acad. Sci.194: 1405–1408. 1932.Google Scholar
  28. 28.
    Bessey, E. A. Sex problems in hemp. Quart. Rev. Biol.8: 194–200. 1933.CrossRefGoogle Scholar
  29. 29.
    Beutner, R. Physical chemistry of living tissues and life processes. 337 pp. 1933.Google Scholar
  30. 30.
    Bezssonoff, N. Du rôle des vitamines chez les végétaux verts. Rev. Path. Vég. et Ent. Agr.14: 142–155. 1927.Google Scholar
  31. 31.
    Blaauw, A. H. Die Perzeption des Lichtes. Rec. Trav. Bot. Néerl.5: 209–372. 1909.Google Scholar
  32. 32.
    —. Licht und Wachstum. I. Zeits. Bot.6: 641–703. 1914; II.7: 465–532. 1915; III. Medd. Landbouwhoogsch. Wageningen. 15: 89–204. 1919Google Scholar
  33. 33.
    Blackman, F. F. Optima and limiting factors. Ann. Botany19: 281–295. 1905.Google Scholar
  34. 34.
    Blackman, V. H. The compound interest law and plant growth. Ann. Botany33: 353–360. 1919.Google Scholar
  35. 35.
    —. Plants in relation to light and temperature. Jour. Roy. Hort. Soc.59: 1–13. 1934.Google Scholar
  36. 36.
    —. Plants in relation to light and temperature. Jour. Roy. Hort. Soc.59: 292–299. 1934.Google Scholar
  37. 37.
    Blum, H. F. Photodynamic action. Physiol. Rev.12: 23–55. 1932.Google Scholar
  38. 38.
    — andScott, K. G. Photodynamically induced tropisms in plant roots. Plant Physiol.8: 525–535. 1933.PubMedGoogle Scholar
  39. 39.
    Böhmer, Karl. Die Bedeutung der Samenteile für die Lichtwirkung und die Wechselbeziehung von Licht und Sauerstoff bei der Keimung lichtempfindlicher Samen. Jahrb. Wiss. Bot.68: 549–601. 1928.Google Scholar
  40. 40.
    Bolas, Bernard D. The influence of light and temperature on the assimilation rate of seedling tomato plants, variety E. S. I. Ann. Rep. Exp. Sta. Nursery & Mark. Gard. Industr. Soc. Cheshunt.19(1933): 84–37. 1934.Google Scholar
  41. 41.
    Bolas, B. D. andSelman, I. W. The effect of light on growth and differentiation in tomato seedlings, var. E. S. I. Ann. Rep. Exp. Sta. Nursery & Mark. Gard. Industr. Soc. Cheshunt.20(1934): 86–89. 1935.Google Scholar
  42. 42.
    Bonnier, G. Influence de la lumière électrique continue sur la forme et la structure des plantes. Rev. Gen. Bot.7: 241–257, 289–305, 332–342,407-419. 1895.Google Scholar
  43. 43.
    Boresch, K. Die Komplementäre chromatische Adaptation. Arch. Protistenk.44: 1–70. 1921.Google Scholar
  44. 44.
    Borodina, I. N. The influence of nitrogenous and mineral nutrition on the time of heading in barley and millet under the condition of different day length. Russian; Eng. summary. Bull. Appl. Bot., Genet. & Plant Breed.27: 171–195. 1931.Google Scholar
  45. 45.
    Borriss, H. Ueber den Einfluss ausserer Faktoren auf Wachstum und Entwicklung der Fruchtkorper vonCoprinus lagopus. Planta22: 644–684. 1934.CrossRefGoogle Scholar
  46. 46.
    Bose, J. C. Comparative electro-physiology. 760 pp. 1907.Google Scholar
  47. 47.
    -. The motor mechanism of plants. 1928.Google Scholar
  48. 48.
    Bosian, G. Assimilations- und Transpirationsbestimmungen an Pflanzen des Zentralkaiserstuhls. Zeits. Bot.26: 209–284. 1933.Google Scholar
  49. 49.
    Bottelier, H. P. Uber den Einfluss ausserer Faktoren auf die Protoplasmatromung in derAvena-Koleoptile. Rec. Trav. Bot. Néerl.31: 474–582. 1934.Google Scholar
  50. 50.
    Boysen-Jensen, P. Die Stoffproduktion der Pflanzen. 1932.Google Scholar
  51. 51.
    —. Über die durch einseitige Lichtwirkung hervorgerufene transversale Leitung des Wuchsstoffes in derAveno-Coleoptile. Planta19: 335–344. 1933.CrossRefGoogle Scholar
  52. 52.
    -. Die Wuchsstofftheorie und ihre Bedeutung für die Analyse des Wachstums und der Wachstumsbewegungen der Pflanzen. 166 pp. 1935.Google Scholar
  53. 53.
    Brauner, L. Permeabilität und Photopismus. Zeits. Bot.16: 113–132. 1924.Google Scholar
  54. 54.
    —. Untersuchungen über das geoelektrische Phänomen. Jahrb. Wiss. Bot.66: 381–428. 1927.Google Scholar
  55. 55.
    —. Zum Problem der transversalen Wuchsstoffverschiebung bei tropistischer Reizung. Proc. Int. Bot. Cong. Amsterdam (Abst. Sec. Papers)2: 269–271. 1935.Google Scholar
  56. 56.
    Bristol-Roach, B. M. On the influence of light and of glucose on the growth of a soil alga. Ann. Botany42: 317–345. 1928.Google Scholar
  57. 57.
    Brooks, M. M. The effects of light of different wave lengths on the penetration of 2,-6, dibromophenol indophenol intoValonia. Protoplasma1: 305–312. 1926.CrossRefGoogle Scholar
  58. 58.
    Brotherton, W. andBartlett, H. H. Cell measurement as an aid in the analysis of variation. Am. Jour. Bot.5: 192–206. 1918.CrossRefGoogle Scholar
  59. 59.
    Brown, W. H. andTrelease, S. F. Alternate shrinkage and elongation of growing stems ofCestrum nocturnum. Philippine Jour. Sci. C.13: 353–360. 1918.Google Scholar
  60. 60.
    Bunsen, R. W. andRoscoe, H. Photochemische Untersuchungen. VI. Meteorologische Licht-Messungen. Ann. Physik. & Chemie117: 529–562. 1862.Google Scholar
  61. 61.
    Burge, W. E. andBurge, E. L. Effect of temperature and light on catalase content ofSpirogyra. Bot. Gaz.77: 220–224. 1924.CrossRefGoogle Scholar
  62. 62.
    Burkholder, P. R. andPratt, R. The photeolic movements ofMimosa pudica in relation to intensity and wave-length. Am. Jour. Bot.21: 704. 1934. (Further data in press. Am. Jour. Bot. 1936.)Google Scholar
  63. 63.
    -. Studies on the leaf movements ofMimosa pudica in relation to light. Am. Jour. Bot. (unpublished). 1936.Google Scholar
  64. 64.
    Burns, G. R. Photosynthesis in various portions of the spectrum. Plant Physiol.8: 247–262. 1933.PubMedGoogle Scholar
  65. 65.
    Buy, H. G. du undNuernbergk, E. Phototropismus und Wachstum der Pflanzen. Ergeb. Biologie9: 358–555, 1932;10: 207–322. 1934.Google Scholar
  66. 66.
    Cannon, W. A. Absorption of oxygen by roots when the shoot is in darkness or in light. Plant Physiol.7: 673–684. 1932.PubMedGoogle Scholar
  67. 67.
    Castle, E. S. Dark adaptation and the light-growth response ofPhycomyces. Jour. Gen. Physiol.12: 391–400. 1929.CrossRefGoogle Scholar
  68. 68.
    —. The phototropic sensitivity ofPhycomyces as related to wave-length. Jour. Gen. Physiol.14: 701–711. 1931.CrossRefGoogle Scholar
  69. 69.
    —. Dark adaptation and the dark growth response ofPhycomyces. Jour. Gen. Physiol.16: 75–88. 1932.CrossRefGoogle Scholar
  70. 70.
    — andHoneyman, A. J. M. The light growth response and the growth system ofPhycomyces. Jour. Gen. Physiol.18: 385–397. 1935.CrossRefGoogle Scholar
  71. 71.
    Chailakhian, M. The age of plants and the photoperiodic reaction. Dokl. Akad. Nauk SSSR. (Compt. Rend. Acad. Sci. URSS). 1933, A: 306–314.Google Scholar
  72. 72.
    —. Jarovization of plants by the action of light. Dokl. Akad. SSSR. (Compt. Rend. Acad. Sci. URSS). 1933, A: 224–229.Google Scholar
  73. 73.
    -. The effect of length of the day upon the chlorophyll apparatus of plants. Dokl. Akad. Nauk. SSSR. (Compt. Rend. Acad. Sci. URSS). 1934:37-42.Google Scholar
  74. 74.
    -and Aleksandrovskaia, V. A. On the nature of the photoperiodic after-effect (induction) and on the effect of the length of day on the activity of the oxidizing enzymes. Dokl. Akad. Nauk. SSSR. (Compt. Rend. Acad. Sci. URSS). 1935(2): 161–166.Google Scholar
  75. 75.
    Chesley, L. C. The effect of light upon the sensitivity of wheat seedlings to X-rays. Jour. Cell. & Comp. Physiol.6: 69–84. 1935.CrossRefGoogle Scholar
  76. 76.
    Chodat, F. Influence de la lumière sur la transpiration végétale. Compt. Rend. Soc. Phys. & Hist. Nat. Genève.48: 55–58. 1931.Google Scholar
  77. 77.
    Ckouchak, D. L’assimilation chlorophylliene de l’acide carbonique par les feuilles vertes dans un champ électrique. Rev. Gén. Bot.41: 465–468. 1929.Google Scholar
  78. 78.
    Chroboczek, E. Premature seed and stalk formation in table beets. Proc. Am. Soc. Hort. Sci.28: 323–327. 1931.Google Scholar
  79. 79.
    -. A study of some ecological factors influencing seedstalk development in beets (Beta vulgaris L.). Cornell Agr, Exp. Sta. Mem. 154. 84 pp. 1934.Google Scholar
  80. 80.
    Clark, R. H., Fowler, F. L. andBlack, P. T. The activation of amylase. Tr. Roy. Soc. Canada, III,25 (3): 99–105. 1931.Google Scholar
  81. 81.
    Clements, F. E. andLong, F. L. Factors in elongation and expansion under reduced light intensity. Plant Physiol.9: 767–781. 1934.PubMedGoogle Scholar
  82. 82.
    Colla, Silvia. Action of ultra-violet rays on etiolated plants. Boll. Soc. Ital. Biol. Sperim.2: 724–726. 1927.Google Scholar
  83. 83.
    —. Sulla fioritura alla sola luce di Wood. Nuovo Gior. Bot. Ital.38: 509–514. 1931.Google Scholar
  84. 84.
    Correns, C. Bestimmung, Vererbung und Verteilung des Geschlechtes bei den höheren Pflanzen. Hand. Vererbungswiss. hrsg. von. E. Baur u. M. Hartmann, Berlin, Borntraeger. 1928.Google Scholar
  85. 85.
    Coupin, H. Sur les plantules qui verdissent à l’obscurité. Compt. Rend. Acad. Sci.170: 1071–1072. 1920.Google Scholar
  86. 86.
    —. Sur les causes de l’élongation de la tige des plantes étiolées. Compt. Rend. Acad. Sci.170: 189–191. 1920.Google Scholar
  87. 87.
    Coward, K. H. The influence of light and heat on the formation of vitaminA in plant tissues. Jour. Biol. Chem.72: 781–799. 1927.Google Scholar
  88. 88.
    Crozier, W. J. andCole, W. H. The phototropic excitation ofLimax. Jour. Gen. Physiol.12: 669–674. 1929.CrossRefGoogle Scholar
  89. 89.
    Curtis, O. F. The translocation of solutes in plants. 273 pp. 1935.Google Scholar
  90. 90.
    Czaja, A. T. Photo-periodizität. Tabulae Biol. Period.3: 1–49. 1933.Google Scholar
  91. 91.
    Daniel, L. Production expérimentale de bulbilles chez le poireau. Compt. Rend. Acad. Sci.195: 567–569. 1932.Google Scholar
  92. 92.
    Darrow G. M. Tomatoes, berries and other crops under continuous light in Alaska. Science78: 370. 1933.PubMedCrossRefGoogle Scholar
  93. 93.
    Darwin, C. and Darwin, F. The power of movement in plants. 1881.Google Scholar
  94. 94.
    Davies, P. A. Distribution of total nitrogen in regeneration of the willow. Bot. Gaz.91: 320–326. 1931.CrossRefGoogle Scholar
  95. 95.
    Davis, A. R. andHoagland, D. R. Further experiments on the growth of plants in a controlled environment. I. The relation of light intensity and exposure time to yield. II. The interrelationship of temperature and light. Am. Jour. Bot.15: 624. 1928.Google Scholar
  96. 96.
    Deats, M. E. The effect on plants of the increase and decrease of the period of illumination over that of the normal day period. Am. Jour. Bot.12: 384–392. 1925.CrossRefGoogle Scholar
  97. 97.
    Demkovskii, P. I. Data on the study of certain biochemical phenomena connected with iarovization. Biull. Iaroviz.2/3: 105–108. 1932.Google Scholar
  98. 98.
    Denny, F. E. Chemical changes induced in potato tubers by treatments that break the rest period. Am. Jour. Bot.16: 326–337. 1929.CrossRefGoogle Scholar
  99. 99.
    —,Miller, L. P. andGuthrie, J. D. Enzyme activities of juices from potatoes treated with chemicals that break the rest period. Am. Jour. Bot.17: 483–509. 1930.CrossRefGoogle Scholar
  100. 100.
    Dhéré, C. etRogowski, W. de. Sur l’absorption des rayons ultra violets par les chlorophylles α et β et par la chlorophylle cristallisee. Compt. Rend. Acad. Sci.155: 653–656. 1912.Google Scholar
  101. 101.
    Dillewijn, C. van. On the light-growth-reactions in different zones of the coleoptile ofAvena sativa. Proc. Kon. Akad. Wetensch. Amsterdam30: 2–9. 1927.Google Scholar
  102. 102.
    Dixon, H. H. Control of differentiation. Proc. Int. Bot. Cong. Amsterdam. (Abst. Sec. Papers)2: 116. 1935.Google Scholar
  103. 103.
    Dolgushin, D. A. On the problem of the photoperiodic after effect. Biull. Iaroviz.1: 30–35. 1932.Google Scholar
  104. 104.
    Doroshenko, A. V. Photoperiodism of some cultivated plants with reference to their origin. Bull. Appl. Bot., Genet. & Plant Breed.17: 167–220. 1927.Google Scholar
  105. 105.
    —andRasumov, V. I. Photoperiodism of some cultivated forms in connection with their geographical origin. Bull. Appl. Bot., Genet. & Plant Breed.22: 219–276. 1929.Google Scholar
  106. 106.
    —,Karpechenko, E. D. andNesterov, E. I. Influence of the length of day on the tuber set in potatoes and several other plants. Bull. Appl. Bot., Genet. & Plant Breed.23: 31–60. 1930.Google Scholar
  107. 107.
    Droogleever, F. C. E. Day arid night period in nuclear divisions. Proc. Kon. Akad. Wet. Amsterdam29: 979–988. 1926.Google Scholar
  108. 108.
    Dubosc, A. La chlorophyll et la lumiere. Moniteur Sci.16: 49–58. 1926.Google Scholar
  109. 109.
    Eaton, F. M. Assimilation-respiration balance as related to length of day reactions of soy beans. Bot. Gaz.77: 311–321. 1924.CrossRefGoogle Scholar
  110. 110.
    Eaton, S. V. Effects of variation in day-length and clipping of plants on nodule development and growth of soy bean. Bot. Gaz.91: 113–143. 1931.CrossRefGoogle Scholar
  111. 111.
    Eckerson, S. Protein synthesis by plants. Bot. Gaz.77: 377–390. 1924.CrossRefGoogle Scholar
  112. 112.
    Eghis, S. A. Contribution to the question on photoperiodism with soy beans and corn. Mem. Inst. Agron. Leningrad5: 5–32. 1928.Google Scholar
  113. 113.
    Eidelman, Z. M. Influence of various amounts of phosphorus and length of day on the physiological functions of the plant. Jour. Landwirtsch. Wiss. Moskva7: 387–402. 1930.Google Scholar
  114. 114.
    —. Combined action of different doses of phosphorus and of periodicity of lighting on the development of barley. Bull. Inst. Sci. Lesshaft 17/18: 411–428. 1934.Google Scholar
  115. 115.
    Einstein, A. Thermodynamische Begründung des photochemischen Aquivalentgesetzes. Ann. Physik IV.37: 832–838. 1912.CrossRefGoogle Scholar
  116. 116.
    Eisenmenger, W. S. The distribution of nitrogen in tobacco when the supplies of nitrogen and of light are varied during the growing period. Jour. Agr. Res.46: 255–265. 1933.Google Scholar
  117. 117.
    Emerson, R. A. Control of flowering in Teosinte. Jour. Heredity15: 41–48. 1924.Google Scholar
  118. 118.
    Emerson, Robert. The chlorophyll factor in photosynthesis. Am. Nat.64: 252–260. 1930.CrossRefGoogle Scholar
  119. 119.
    — andArnold, W. A. A separation of the reactions in photosynthesis by means of intermittent light. Jour. Gen. Physiol.15: 391–420. 1932.CrossRefGoogle Scholar
  120. 120.
    Euler, H. von undHellstrom, H. Über die Bildung von Xanthophyll, Carotin und Chlorophyll in belichteten und unbelichteten Gerstenkeimlingen. Zeits. Phys. Chem.183: 177–183. 1929.Google Scholar
  121. 121.
    Euler, H. von, Bergman, B. undHellstrom, H. Ueber das Verhältnis von chloroplastenzahl und Chlorophyllkonzentration beiElodea densa. Ber. Deut. Bot. Ges.52: 458–462. 1934.Google Scholar
  122. 122.
    Evans, M. W. Relation of latitude to time of blooming of timothy. Ecology12: 182–187. 1931.CrossRefGoogle Scholar
  123. 123.
    Eyster, W. H. Protochlorophyll. Science68: 569–570. 1928.PubMedCrossRefGoogle Scholar
  124. 124.
    Fechner, G. T. Elemente der Psychophysik. I, 336 pp. II, 571 pp. 1860.Google Scholar
  125. 125.
    Figdor, W. Über den Einfluss des Lichtes auf die Gestaltung derBowiea volubilis sowie über die Vermehrung und den Bau ihrer Zwiebel. Sitzungsb. Akad. Wiss. Wien, Math.-Nat. Kl. Abt. 1.137: 45–54. 1928.Google Scholar
  126. 126.
    Fisher, H. Zur Frage der Kohlensäure-Ernährung der Pflanzen. Gartenflora65: 232–237. 1916.Google Scholar
  127. 127.
    Fitting, Hans. Untersuchungen über Chemodinese beiVallisneria. Jahrb. Wiss. Bot.67: 427–596. 1927.Google Scholar
  128. 128.
    Fleischer, W. E. The relation between chlorophyll content and rate of photosynthesis. Jour. Gen. Physiol.18: 573–597. 1935.CrossRefGoogle Scholar
  129. 129.
    Fletcher, L. A. A preliminary study of the factors affecting the red color on apples. Proc. Am. Soc. Hort. Sci.26: 191–196. 1929.Google Scholar
  130. 130.
    Flint, L. H. Light in relation to dormancy and germination in lettuce seed. Science80: 38–40. 1934.PubMedCrossRefGoogle Scholar
  131. 131.
    — andMcAlister, E. D. Wave lengths of radiation in the visible spectrum inhibiting the germination of light-sensitive lettuce seed. Smithson. Misc. Coll.94: 1–11. 1935.Google Scholar
  132. 132.
    Foerster, K. Die Wirkung ausserer Faktoren auf die Entwickelung und Gestaltbildung beiMarchantia polymorpha. Planta3: 325–390. 1927.CrossRefGoogle Scholar
  133. 133.
    Fowle, F. E. Smithsonian Physical Tables. Smithson. Misc. Coll.71(2): 1–458. Publ. No. 2539. 1927.Google Scholar
  134. 134.
    Fraps, G. S. andSterges, A. J. Effect of sunlight on the nitrification of ammonium salts in soils. Soil Sci.39: 85–94. 1935.CrossRefGoogle Scholar
  135. 135.
    Freund, Hans. Ueber die Bedingungen des Wachstums vonOedogonium pluviale. Ein Beitrag zur Frage des Stickstoff— und Phosphoretiolements. Planta5: 520–548. 1928.CrossRefGoogle Scholar
  136. 136.
    Freytag, H. Zur Kenntnis der UV-Strahlenwirkung auf Blätter und Fruchtschalen. Beih. Bot. Centralbl.51: 408–436. 1933.Google Scholar
  137. 137.
    Fuller, H. J. The injurious effects of ultra-violet and infra-red radiation on plants. Ann. Mo. Bot. Gard.19: 79–84. 1932.CrossRefGoogle Scholar
  138. 138.
    Funke, G. L. On the influence of light of different wave-lengths on the growth of plants. Rec. Trav. Bot. Néerl.28: 431–485. 1931.Google Scholar
  139. 139.
    Gabrielsen, E. K. Untersuchungen über den Kohlenstoffhaushalt einer Gewächshauspflanze im Winter bei Tageslicht und mit elektrischer Zusatzbeleuchtung. Planta22: 180–189. 1934.CrossRefGoogle Scholar
  140. 140.
    —. Die Kohlensäureassimilation der Laubblätter in verschiedenen Spektralgebieten. Planta23: 474–478. 1935.CrossRefGoogle Scholar
  141. 141.
    Gaidukov, N. Zur Farbenanalyse der Algen. Ber. Deut. Bot. Ges.22: 23–29. 1904.Google Scholar
  142. 142.
    Gardner, W. A. Effect of light on germination of light-sensitive seeds. Bot. Gaz.71: 249–288. 1921.CrossRefGoogle Scholar
  143. 143.
    Gardner, V. R. Studies in the nutrition of the strawberry. Univ. Mo. Agr. Exp. Sta. Bull. 57. 1923.Google Scholar
  144. 144.
    Garner, W. W. Comparative responses of long-day and short-day plants to relative length of day and night. Plant Physiol.8: 347–356. 1933.PubMedGoogle Scholar
  145. 145.
    — andAllard, H. A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Jour. Agr. Res.18: 553–606. 1920.Google Scholar
  146. 146.
    ——. Further studies in photoperiodism, the response of the plant to relative length of day and night. Jour. Agr. Res.23: 871–920. 1923.Google Scholar
  147. 147.
    ——. Localization of the response in plants to relative length of day and night. Jour. Agr. Res.31: 555–567. 1925.Google Scholar
  148. 148.
    ——. Effect of short alternating periods of light and darkness on plant growth. Science66: 40–42. 1927.PubMedCrossRefGoogle Scholar
  149. 149.
    ——. Effect of abnormally long and short alternations of light and darkness on growth and development of plants. Jour. Agr. Res.42: 629–651. 1931.Google Scholar
  150. 150.
    Garner, W. W., Bacon, C. W. andAllard, H. A. Photoperiodism in relation to hydrogen-ion concentration of the cell sap and the carbohydrate content of the plant. Jour. Agr. Res.27: 119–156. 1924.Google Scholar
  151. 151.
    Gassner, G. Beiträge zur physiologischen Characteristik sommer- und winterannueller Gewächse, insbesondere der Getreidepflanzen. Zeits. Bot.10: 417–480. 1918.Google Scholar
  152. 152.
    — undGoeze, G. Assimilationsverhalten, Chlorophyllgehalt und Transpirationsgrösse von Getreideblättern mit besonderer Berucksichtigung der Kalium- und Stickstoffernährung. Zeits. Bot.27: 257–340. 1934.Google Scholar
  153. 153.
    Gates, F. L. The absorption of ultra-violet radiation by crystalline pepsin. Jour. Gen. Physiol.18: 265–278. 1934.CrossRefGoogle Scholar
  154. 154.
    Gautheret, R. J. Sur la production de chlorophylle dans les racines exposées à la lumière, en particulier dans la racine d’orge. Compt. Rend. Acad. Sci.194: 1510–1513. 1932.Google Scholar
  155. 155.
    Geiger, Max. Studien zum Gaswechsel einer extremen Schattenpflanze (Aspidistra) und zur Methodik der Gaswechselversuche. Jahrb. Wiss. Bot.67: 635–701. 1927.Google Scholar
  156. 156.
    Gessner, F. Wachstum und Wanddehnbarkeit amHelianthus hypokotyl. Jahrb. Wiss. Bot.80: 143–168. 1934.Google Scholar
  157. 157.
    Gilbert, B. E. Interrelation of relative day length and temperature. Bot. Gaz.81: 1–24. 1926.CrossRefGoogle Scholar
  158. 158.
    —. The response of certain photoperiodic plants to differing temperature and humidity conditions. Ann. Botany40: 315–320. 1926.Google Scholar
  159. 159.
    Gile, P. L. Absorption of nitrates by corn in the dark. Science81: 520–521. 1935.PubMedCrossRefGoogle Scholar
  160. 160.
    Giroud, A., Rakoto Ratsimamanga, A. andLeblond, C. P. Relations entre l’acide ascorbique et la chlorophylle. Bull. Soc. Chem. Biol.17: 232–251. 1935.Google Scholar
  161. 161.
    Gistl, R. Beziehung zwischen Licht undSchistostega-Vorkeim. Ber. Deut. Bot. Ges.44: 483–492. 1926.Google Scholar
  162. 162.
    Glass, H. B. Effect of light on the bioelectric potentials of isolatedElodea leaves. Plant Physiol.8: 263–274. 1933.PubMedGoogle Scholar
  163. 163.
    Goebel, K. Morphologische und biologische Bemerkungen.32. Induzierte Dorsiventralität bei Flechten. Flora121: 177–188. 1927.Google Scholar
  164. 164.
    —. Ueber die Einwirkung des Lichtes auf die Flächentwicklung der Farnprothallien. Rec. Trav. Bot. Néerl.25A: 122–128. 1928.Google Scholar
  165. 165.
    Goldschmidt, R. Analysis of intersexuality in the gipsy-moth. Quart. Rev. Biol.6: 125–142. 1931.CrossRefGoogle Scholar
  166. 166.
    Goode, G. P. The formation of vitamin A in corn sprouts by light, and the transfer of the vitamin from the sprout to the grain. Bull. Basic Sci. Res., Univ. Cincinnati4: 55–58. 1932.Google Scholar
  167. 167.
    Goodspeed, T. H. Notes on the germination of tobacco seed. Univ. Cal. Pub. Bot.5: 451–455. 1919.Google Scholar
  168. 168.
    Gortner, R. A. Outlines of biochemistry. 793 pp. 1929.Google Scholar
  169. 169.
    Gracanin, M. The effect of light on the resorption of salts by plants. (Rep. Czech. Bot. Soc.) Preslia11: 35–39. 1932.Google Scholar
  170. 170.
    Gray, G. F. Relation of light intensity to fruit setting in the sour cherry. Mich. Agr. Exp. Sta. Tech. Bull. 136. 1934.Google Scholar
  171. 171.
    Greene, L., Withrow, R. B. and Richman, M. W. The response of greenhouse crops to electric light supplementing daylight. Purdue Univ. Agr. Exp. Sta. Bull. 366. 1932.Google Scholar
  172. 172.
    Griffin, Agatha. Some notes on anthocyanin formation in leaves with cut veins. Butler Univ. Bot. Studies3: 139–140. 1935.Google Scholar
  173. 173.
    Grotthus, T. von. Uber die chemische Wirksamkeit des Lichtes und der Elektrizität. Jahresverhandl. Kurland. Ges. Literatur u. Kunst.1: 119–189. 1819. Reprinted in Ostwald’s “Klassiker der exakten Wissenschaften.” no. 152.Google Scholar
  174. 174.
    Guerrini, Guido. Influence delle luci monochromatiche sull’azione delSaccharomyces cerevisiae in presenza di’glucosio. Boll. Soc. Ital. Biol. Sperim.5: 635–636. 1930.Google Scholar
  175. 175.
    Gunderson, M. F. andSkinner, C. E. Production of vitamins by a pure culture ofChlorococcum grown in darkness on a synthetic medium. Plant Physiol.9: 807–815. 1934.PubMedGoogle Scholar
  176. 176.
    Guthrie, John D. Effect of environmental conditions on the chloroplast pigments. Am. Jour. Bot.16: 716–746. 1929.CrossRefGoogle Scholar
  177. 177.
    Haberlandt, G. Ueber die Sonnen- und Schattenblätter der Crataegomespili und ihrer Eltern. Sitzungsber. Preuss. Akad. Wiss. 1934: 365–376.Google Scholar
  178. 178.
    Hackbarth, J. Versuche über Photoperiodismus bei südamerikanischen Kartoffelklonen. Der Züchter7: 95–104. 1935.Google Scholar
  179. 179.
    Haig, C. The spectral sensibility ofAvena. Proc. Nat. Acad. Sci.20: 476–479. 1934.PubMedCrossRefGoogle Scholar
  180. 180.
    Hall, Muriel P. An analysis of the factors controlling the growth form of certain fungi, with especial reference toSclerotinia fructigena. Ann. Botany47: 543–578. 1933.Google Scholar
  181. 181.
    Hamada, Hideo. Uber die Beeinflussung des Wachstums des Mesokotyls und der Koleoptile vonAvena-Keimlingen durch das Licht. Mem. Coll. Sci. Kyoto Imp. Univ. Sci. B.6: 161–238. 1931.Google Scholar
  182. 182.
    Hammett, F. S. The natural chemical equilibrium regulative of growth by increase in cell number. Protoplasma11: 382–411. 1930.CrossRefGoogle Scholar
  183. 183.
    Hanna, W. F. The nature of the growth rate in plants. Sci. Agr.5: 133–138. 1925.Google Scholar
  184. 184.
    Harder, R. Uber die Bedeutung von Lichtintensität und Wellenlänge fur die Assimilation farbiger Algen. Zeits. Bot.15: 305–355. 1923.Google Scholar
  185. 185.
    Harned, H. S. Radiation and chemical reaction. Jour. Frank. Inst.196: 181–202. 1923.CrossRefGoogle Scholar
  186. 186.
    Harper, R. A. Organization and light relations inPolysphondylium. Bull. Torrey Bot. Club59: 49–84. 1932.CrossRefGoogle Scholar
  187. 187.
    Harrington, J. B. Growing wheat and barley hybrids in winter by means of artificial light. Sci. Agr.7: 125–130. 1926.Google Scholar
  188. 188.
    Harvey, R. B. Growth of plants in artificial light. Bot. Gaz.74: 447–451. 1922.CrossRefGoogle Scholar
  189. 189.
    Harvey, E. M. and Murneek, A. E. The relation of carbohydrates and nitrogen to the behavior of apple spurs. Oregon Agr. Exp. Sta. Bull. 176. 1921.Google Scholar
  190. 190.
    Haut, I. C. The photoperiodic response of the sweet pea. Proc. Am. Soc. Hort. Sci.27(1930): 314–318. 1931.Google Scholar
  191. 191.
    Hecht, S. Intensity and the process of photoreception. Jour. Gen. Physiol.2: 337–347. 1919–20.CrossRefGoogle Scholar
  192. 192.
    -. The nature of the photoreceptor process, pp. 704–828 in Murchison’s “Handbook of Experimental Psychology.” 1125 pp. 1934.Google Scholar
  193. 193.
    Heller, V. G. Vitamin synthesis in plants as affected by light source. Jour. Biol. Chem.76: 499–511. 1928.Google Scholar
  194. 194.
    Hendricks, E. andHarvey, R. B. Growth of plants in artificial light. Bot. Gaz.77: 330–334. 1924.CrossRefGoogle Scholar
  195. 195.
    Hercik, F. The photocapillary reaction of plant sap. Biochem. Jour.21: 1253–1258. 1927.Google Scholar
  196. 196.
    —. Die photoelektrischen Grundlagen der photokapillaren Reaktion. Protoplasma5: 400–411. 1928.CrossRefGoogle Scholar
  197. 197.
    Hertel, E. Ueber physiologische Wirkung von Strahlen verschiedener Wellenlänge. Zeits. Allg. Physiol.5: 95–122. 1905.Google Scholar
  198. 198.
    Hibbard, R. P. and Grigsby, B. H. Relation of light, potassium, and calcium deficiencies to photosynthesis, protein synthesis, and translocation. Mich. Agr. Exp. Stat. Tech. Bull. 141. 1934.Google Scholar
  199. 199.
    Hicks, Phyllis A. Chemistry of growth as represented by carbon/nitrogen ratio. Bot. Gaz.86: 193–209. 1928.CrossRefGoogle Scholar
  200. 200.
    —. The carbon/nitrogen ratio in the wheat plant. New Phyt.27: 1–46. 1928.CrossRefGoogle Scholar
  201. 201.
    —. Interaction of factors in the growth of Lemna. V. Some preliminary observations upon the interaction of temperature and light on the growth of Lemna. Ann. Botany48: 515–525. 1934.Google Scholar
  202. 202.
    Hoagland, D. R. andDavis, A. R. Further experiments on the absorption of ions by plants, including observations on the effect of light. Jour. Gen. Physiol.6: 47–62. 1923.CrossRefGoogle Scholar
  203. 203.
    —, — andHibbard, P. L. The influence of light, temperature, and other conditions on the ability ofNitella cells to concentrate halogens in the cell sap. Jour. Gen. Physiol.10: 121–146. 1926.CrossRefGoogle Scholar
  204. 204.
    Hoffman, Curt. Uber die Durchlassigkeit kernloser Zellen. Planta4: 584–605. 1927.CrossRefGoogle Scholar
  205. 205.
    Holman, R. On solarization of leaves. Univ. Cal. Pub. Bot.16: 139–151. 1930.Google Scholar
  206. 206.
    Hommer, Maria. Uber das Etiolement bei Farnpflanzen und die Ursachen des Etiolements im Allgemeinen. Bot. Archiv.14: 1–46. 1926.Google Scholar
  207. 207.
    Honert, T. H. van den. Carbon dioxide assimilation and limiting factors. Rec. Trav. Bot. Néerl.27: 149–286. 1930.Google Scholar
  208. 208.
    Honing, J. A. The heredity of the need of light for germination in tobacco seeds. Proc. Kon. Akad. Wet. Amsterdam.29: 823–833. 1926.Google Scholar
  209. 209.
    Hooker, H. D. The physiological significance of carbohydrate accumulation. Proc. Int. Congr. Plant Sci. Ithaca, 1926,2: 1071–1080. 1929.Google Scholar
  210. 210.
    -and Bradford, F. C. Localization of the factors determining fruit bud formation. Mo. Agr. Exp. Sta. Res. Bull. 47. 1921.Google Scholar
  211. 211.
    Hopkins, E. W. The effect of long and short day and shading on nodule development and composition of the soy-bean. Soil Sci.39: 297–320. 1935.CrossRefGoogle Scholar
  212. 212.
    Hubert, B. On the photodecomposition of chlorophyll. Proc. Kon. Akad. Wet. Amsterdam37: 684–688. 1934.Google Scholar
  213. 213.
    Hurd-Karrer, Annie May. The formative effect of day length on wheat seedlings. Jour. Maryland Acad. Sci.1: 115–126. 1930.Google Scholar
  214. 214.
    —. Titration curves of etiolated and of green wheat seedlings reproduced with buffer mixtures. Plant Physiol.5: 307–328. 1930.PubMedGoogle Scholar
  215. 215.
    —. Comparative responses of a spring and a winter wheat to day length and temperature. Jour. Agr. Res.46: 867–888. 1933.Google Scholar
  216. 216.
    — andDickson, A. D. Carbohydrate and nitrogen relations in wheat plants with reference to type of growth under different environmental conditions. Plant Physiol.9: 533–565. 1934.PubMedGoogle Scholar
  217. 217.
    Hutchings, S. S. Light in relation to the seed germination ofMimulus ringens L. Am. Jour. Bot.19: 632–643. 1932.CrossRefGoogle Scholar
  218. 218.
    Hutchinson, A. H. andAshton, Miriam R. The effect of radiant energy on diastase activity. Canad. Jour. Res.9: 49–64. 1933.Google Scholar
  219. 219.
    Huxley, J. S. Problems of relative growth. 276 pp. 1932.Google Scholar
  220. 220.
    Ivanov, L. A. undOrlova, I. M. K. Zur Frage über die Winterassimilation von Kohlensäure unserer Nadelhölzer. Zhurn. Russk. Bot. Obshch.16: 139–157. 1931.Google Scholar
  221. 221.
    Jaccard, P. andJaag, O. Photosynthese und Photoperiodizität in kohlensaurereicher Luft. Beih. Bot. Centralbl.50: 150–195. 1932.Google Scholar
  222. 222.
    James, W. O. The dynamics of photosynthesis. New Phyt.33: 8–40. 1934.CrossRefGoogle Scholar
  223. 223.
    Jansen, B. C. P. Identity of Vitamine B2 and flavine and the nomenclature of vitamins. Nature135: 267. 1935.CrossRefGoogle Scholar
  224. 224.
    Jeffs, Royal E. The elongation of root hairs as affected by light and temperature. Am. Jour. Bot.12: 577–606. 1925.CrossRefGoogle Scholar
  225. 225.
    Jirovec, O. undVácha, K. Photodynamische Erscheinungen an grünen und farblosen Stämmen vonEuglena gracilis. Protoplasma22: 203–208. 1934.CrossRefGoogle Scholar
  226. 226.
    Johansson, N. Einige Versuche über die Einwirkung verschiedener Belichtung auf die vegetative Entwicklung vonRaphanus sativus L. Flora121: 222–235. 1927.Google Scholar
  227. 227.
    Johnston, E. S. The functions of radiation in the physiology of plants. Smithsonian Misc. Coll.87(14): 1–15. 1932.Google Scholar
  228. 228.
    —. Phototropic sensitivity in relation to wave length. Smithsonian Misc. Coll.92(11): 1–17. 1934.Google Scholar
  229. 229.
    Jones, W. N. Selective action of polarized light upon starch grains. Nature117: 15–16. 1926.CrossRefGoogle Scholar
  230. 230.
    Kahane, O. Ein Beitrag zur Analyse der Lichtwirkung auf die Polarität der Erbsenkeimlinge (Pisum sativum). Pub. Biol. Ecole Veterinaires Brno.6: 325–346. 1927.Google Scholar
  231. 231.
    Karling, J. S. Dendrograph studies onAchras Zapota in relation to the optimum conditions for tapping. Am. Jour. Bot.21: 161–193. 1934.CrossRefGoogle Scholar
  232. 232.
    Karrer, P. andHelfenstein, A. Plant pigments. Ann Rev. Biochem. Stanford Univ. Press1: 551–580. 1932;2: 397–418. 1933.Google Scholar
  233. 233.
    Keilin, D. Cytochrome and respiratory enzymes. Proc. Roy. Soc. B.104: 206–252. 1929.Google Scholar
  234. 234.
    Kellerman, K. F. A review of the discovery of photoperiodism: The influence of the length of daily light periods upon the growth of plants. Quart. Rev. Biol.1: 87–94. 1926.CrossRefGoogle Scholar
  235. 235.
    Kimball, H. H. Intensity of solar radiation at the surface of the earth and its variations with latitude, altitude, season and time of the day. Monthly Weather Rev.63: 1–4. 1935.CrossRefGoogle Scholar
  236. 236.
    Kind, W. Elektrisches Licht und Pflanzenwachstum. Die Umschau39: 52–53, 55. 1935.Google Scholar
  237. 237.
    Kinzel, W. Neue Tabellen zu Frost und Licht als beeinflussende Kräfte bei der Samenkeimung. 80 pp. 1926.Google Scholar
  238. 238.
    Kishi, Y. andYokota, Y. Studies in the change of chemical constituents of mulberry leaves in the intercepted sunlight. Eng. Summary. Bull. Sci. Fak. Terkult Kyusu Imp. Univ.6: 103–104. 1935.Google Scholar
  239. 239.
    Kistiakowsky, G. B. Photochemical processes. Chem. Catalog Co. New York, 270 pp. 1928.Google Scholar
  240. 240.
    Klebs, G. Alterations in the delevopment and forms of plants as a result of environment. Proc. Roy. Soc. London. B.82: 547–558. 1910.Google Scholar
  241. 241.
    —. Uber die Blütenbildung vonSempervivum. Flora111–112: 128–151. 1918.Google Scholar
  242. 242.
    Klugh, A. B. The effect of light of different wave lengths on the rate of reproduction ofVolvox aureus andClosterium acerosum. New Phyt.24: 186–190. 1925.CrossRefGoogle Scholar
  243. 243.
    Knott, J. E. Further localization of the response in plant tissue to relative length of day and night. Proc. Am. Soc. Hort. Sci.23 (1926): 67–70. 1927.Google Scholar
  244. 244.
    —. Rapidity of response of spinach to change in photoperiod. Plant Physiol.7: 125–130. 1932.PubMedGoogle Scholar
  245. 245.
    —. Effect of a localized photoperiod on spinach. Proc. Am. Soc. Hort. Sci.31(suppl): 152–154. 1934.Google Scholar
  246. 246.
    Koch, Kurt. Untersuchungen über den Quer- und Längstransport des Wuchsstoffs in Pflanzenorganen. Planta22: 190–220. 1934.CrossRefGoogle Scholar
  247. 247.
    Kögl, F. Uber Wuchstoffe der Auxin- und der Bios-Gruppe. Ber. Deut. Chem. Ges.68: 16–28. 1935.CrossRefGoogle Scholar
  248. 248.
    Kokin, Abram. Der Einfluss des verkürzten Tages und der mechanischen Verringerung der Blätterzahl auf die Aufspeicherung von Zucker in den Wurzeln der Zuckerrübe. I. Arb. Ukrainisch. Inst. Angew. Bot.1: 122–140. 1930.Google Scholar
  249. 249.
    Kommerell, Elisabeth. Quantitative Versuche über den Einfluss des Lichtes verschiedener Wellenlängen auf die Keimung von Samen. Jahrb. Wiss. Bot.66: 461–512. 1927.Google Scholar
  250. 250.
    Kondo, M., Okamura, T., Isshiki, S. andKasahara, Y. Untersuchungen über “Photoperiodismus” der Reispflanzen. Ber. Ohara Inst. Landw. Forsch.6: 307–330. 1934.Google Scholar
  251. 251.
    Kosaka, H. Ueber den Einfluss des Lichtes, der Temperatur und des Wassermangels auf die Färbung der Chrysanthemum-Blüten. Bot. Mag. Tokyo46: 551–560. 1932.Google Scholar
  252. 252.
    Kramer, P. J. Some reactions of tree seedlings to variations in length of day. Abstracts of papers presented before 11th annual meeting of Am. Soc. Plant Physiol. Dec. 27–29, 1934. Pittsburgh, Pa. p. 7. 1934.Google Scholar
  253. 253.
    Kraus, E. J. The modification of vegetative and reproductive functions under some varying conditions of metabolism. Am. Jour. Bot.7: 409–416. 1920.CrossRefGoogle Scholar
  254. 254.
    -and Kraybill, H. R. Vegetation and reproduction with special reference to the tomato. Oregon Agr. Exp. Sta. Bull. 149. 1918.Google Scholar
  255. 255.
    Kraus, G. Ueber die Ursachen der Formänderungen etiolierenden Pflanzen. Jahrb. Wiss. Bot.7: 209–260. 1869–1870.Google Scholar
  256. 256.
    Kraybill, H. R. Effect of shading and ringing upon the chemical composition of apple and peach trees. N. H. Agr. Exp. Sta. Tech. Bull. 23. 1923.Google Scholar
  257. 257.
    Kuhn, R. Plant pigments. Ann. Rev. Biochem.4: 479–496. 1935.CrossRefGoogle Scholar
  258. 258.
    —,Wagner-Jauregg, T. andKaltschmitt, H. Uber die Verbreitung der Flavine im Pflanzenreich. Ber. Deut. Chem. Ges.67: 1452–1457. 1934.CrossRefGoogle Scholar
  259. 259.
    Kuilman, L. W. Physiologische Untersuchungen über die Anthocyane. Rec. Trav. Bot. Néerl.27: 287–416. 1930.Google Scholar
  260. 260.
    Küster, E. Pathologische Pflanzenanatomie. 3 Aufl. 558 pp. 1925.Google Scholar
  261. 261.
    Kustner, Heinz. Hormonwirkung bei den Pflanzen und Hormonsteigerung durch rotes Licht. Klin. Woch.10: 1585. 1931.CrossRefGoogle Scholar
  262. 262.
    Laibach, F. Ueber die Auslösung von Kallus und Wurzelbildung durch Indolylessigsaure. Ber. Deut. Bot. Ges.53: 359–364. 1935.Google Scholar
  263. 263.
    Laibach, F., Mai, G. undMuller, A. Über ein Zellteilungshormon. Naturwiss.17/18: 288. 1934.CrossRefGoogle Scholar
  264. 264.
    Lange, S. Über den Einfluss weissen und roten Lichtes auf die Entwicklung des Mesokotyls bei Haferkeimlingen. Jahrb. Wiss. Bot.71: 1–25. 1929.Google Scholar
  265. 265.
    Laurens, Henry. The physiological effects of radiant energy. 616 pp. 1933.Google Scholar
  266. 266.
    Laurie, Alex. Photoperiodism—Practical application to greenhouse culture. Proc. Am. Soc. Hort. Sci.27: 319–322. 1930.Google Scholar
  267. 267.
    -and Chadwick, L. C. Commercial flower forcing, etc. 519 pp. 1934.Google Scholar
  268. 268.
    — andPoesch, G. H. Photoperiodism. The value of supplementary illumination and reduction of light on flowering plants in the greenhouse. Ohio Agr. Exp. Sta. Bull.512: 142. 1932.Google Scholar
  269. 269.
    Lazarev, P. P. undFormazova, L. N. Ueber den Einfluss der Beleuchtung auf einige Prozesse in Pflanzen. Dokl. Akad. Nauk. SSSR (Compt. Rend Acad. Sci. URSS)1935 (2): 414–418 (also 419–421). 1935.Google Scholar
  270. 270.
    Lebedeff, A. F. Vergleichende Untersuchungen über einige physiologische Prozesse bei albinotischem und grünem Mais. Verhandl. V. Int. Kon. Vererbungs-Wiss. Berlin.2(1927): 955–972. 1928.Google Scholar
  271. 271.
    Lederer, E. Les carotenoids des plantes. 82 pp. 1934.Google Scholar
  272. 272.
    Lepeschkin, W. W. Light and the permeability of protoplasm. Am. Jour. Bot.17: 953–970. 1930.CrossRefGoogle Scholar
  273. 273.
    —. Influence of visible and ultra-violet rays on the stability of protoplasm. Am. Jour. Bot.19: 547–558. 1932.CrossRefGoogle Scholar
  274. 274.
    — andDavis, G. E. Hemolysis and the solar spectrum. Protoplasma20: 189–194. 1933.CrossRefGoogle Scholar
  275. 275.
    Lewkowitsch, Elsa. Ultra-violet absorption spectrum of chlorophyll in alcoholic solution. Biochem. Jour.22: 777–778. 1928.Google Scholar
  276. 276.
    Li, T.-T. Light and leaf development inGinkgo biloba. Sci. Rep. Nat. Tsing Hua Univ. B, Biol. & Psychol. Sci.2: 11–27. 1934.Google Scholar
  277. 277.
    Loehwing, W. F. Some effects of insolation on mineral nutrition ofTriticum. Proc. Soc. Exp. Biol. & Med.26: 662–663. 1929.Google Scholar
  278. 278.
    Loew, O. Was gibt den Anstoss zur Blutenbildung? Fortschr. Landw.2: 105–106. 1927.Google Scholar
  279. 279.
    Lojkin, M. Some effects of ultra-violet rays on vitamin D content of plants as compared with the direct irradiation of the animal. Contr. Boyce Thompson Inst. Plant Res.3: 245–265. 1931.Google Scholar
  280. 280.
    Long, E. R. Growth and colloid hydration in cacti. Bot. Gaz.59: 491–497. 1915.CrossRefGoogle Scholar
  281. 281.
    Loomrs, W. E. Growth-differentiation balance vs. carbohydrate-nitrogen ratio. Proc. Am. Soc. Hort. Sci.29: 240–245. 1933.Google Scholar
  282. 282.
    —. Daily growth of maize. Am. Jour. Bot.21: 1–6. 1934.CrossRefGoogle Scholar
  283. 283.
    Lubimenko, V. N. La biologie de la photosynthèse. Rev. Gén. Bot.40: 486–504. See also 40: 415–447. 1928.Google Scholar
  284. 284.
    — andHubbenet, E. R. The influence of temperature on the rate of accumulation of chlorophyll in etiolated seedlings. New Phyt.31: 26–57. 1932.CrossRefGoogle Scholar
  285. 285.
    — andSzeglova, O. A. Sur l’adaptation photopériodique chez les plantes vertes. Jour. Soc. Bot. Russie12: 113–162. 1927.Google Scholar
  286. 286.
    ——. L’adaptation photopériodique des plantes. Rev. Gén. Bot.40: 577–590. 1928.Google Scholar
  287. 287.
    ——. Sur l’induction photopériodique dans le processus du développement des plantes. Bull. Jard. Bot. Acad. Sci. URSS.30: 1–52. 1932.Google Scholar
  288. 288.
    -and Tikhovskaiia, Z. P. Photosynthesis in sea weeds and their chromatic adaptation. Proc. All-Russ. Cong. Bot. Leningrad, 1928. Publ. 1928: 40–41.Google Scholar
  289. 289.
    Luckiesh, M. Artificial sunlight. 254 pp. 1930.Google Scholar
  290. 290.
    Lund, E. J. Comparison of the effects of temperature on the radial and longitudinal electric polarities in wood and cortex of the Douglas fir. Plant Physiol.7: 505–516. 1932.PubMedGoogle Scholar
  291. 291.
    Lundegardh, H. Environment and plant development. Trans. by E. Ashby. 330 pp. 1931.Google Scholar
  292. 292.
    Lysenko, T. D. Iarovization of the agricultural plants. Odessa, Ukrainskii Inst. Selek. Bull. Iaroviz.1: 14–29. 1932.Google Scholar
  293. 293.
    —. Do agricultural plants require photoperiodism ? Odessa, Ukrainskii Inst. Selek. Bull. Iaroviz.2/3: 16–34. 1932.Google Scholar
  294. 294.
    MacDougal, D. T. The influence of light and darkness upon growth and development. Mem. N. Y. Bot. Gard.2: 1–319. 1903.Google Scholar
  295. 295.
    MacKinney, G. Development of the chlorophyll and carotinoid pigments in barley seedlings. Plant Physiol.10: 365–373. 1935.PubMedGoogle Scholar
  296. 296.
    Macht, David I. Photopharmacology.VI. Influence of sun’s rays on growth of yeast in some fluorescent solutions. Proc. Soc. Exp. Biol. & Med.23: 639–641. 1926.Google Scholar
  297. 297.
    —. Effect of polarized light on plants. Am. Jour. Bot.15: 621. 1928.Google Scholar
  298. 298.
    — andHill, J. H. The influence of polarized light on yeast and bacteria. Proc. Soc. Exp. Biol. & Med.22: 474–475. 1925.Google Scholar
  299. 299.
    Magness, J. R. Observations on color development in apples. Proc. Wash. State Hort. Ass.24: 128–130. 1928.Google Scholar
  300. 300.
    Maier, Willi. Untersuchungen zur Frage der Lichtwirkung auf die Keimung einigerPoa-arten. Jahrb. Wiss. Bot.77: 321–392. 1932.Google Scholar
  301. 301.
    Malinowski, E. Effect of the relative length of day and night on hybrid vigor inPhaseolus vulgaris. Polish Agr. & Forest Ann.33: 50–58. 1934.Google Scholar
  302. 302.
    Martin, E. V. Effect of solar radiation on transpiration ofHelianthus annuus. Plant Physiol.10: 341–354. 1935.PubMedGoogle Scholar
  303. 303.
    Mason, S. C. The inhibitive effect of direct sunlight on the growth of the date palm. Jour. Agr. Res.31: 455–468. 1925.Google Scholar
  304. 304.
    Matskov, Fedor. The influence of intermittent artificial light on the assimilating and enzymic mechanism of the sugar beet. Physiol. Studien an der Zuckerrübe Arb. Ukrainisches Inst. Angew. Bot. Sect. Pflanzenphysiol. Trudy Ukrains. Inst. Prikl. Bot.1: 191–211. 1930.Google Scholar
  305. 305.
    Maximov, N. A. Pflanzenkultur bei electrischem Licht und ihre Anwendung bei Samenprüfung und Pflanzenzüchtung. Biol. Centralbl.45: 627–639. 1925.Google Scholar
  306. 306.
    —. Physiological factors controlling the length of the vegetative period. Bull. Appl. Bot., Genet. & Plant Breed.20: 169–212. 1929.Google Scholar
  307. 307.
    -. A textbook of plant physiology. Trans, by A. E. Murneek and R. B. Harvey. 381 p. 1930.Google Scholar
  308. 308.
    —,Lebedintsev, E. V. andKrasnoselsky, T. A. Ueber den Einfluss von Beleuchtungsverhältnissen auf die Entwicklung und Tätigkeit des Wurzelsystems. Bull. Jard. Bot. Rép. Russe.23: 1–11. 1924.Google Scholar
  309. 309.
    -,Razumov, V. I. and Borodina, I. N. Physiology of photoperiodism. Proc. All-Union Cong. Bot., Leningrad. 1928:42.Google Scholar
  310. 310.
    McClelland, T. B. Studies of the photoperiodism of some economic plants. Jour. Agr. Res.37: 603–628. 1928.Google Scholar
  311. 311.
    McCollum, J. P. Vegetative and reproductive responses associated with fruit development in the cucumber. Cornell Agr. Exp. Sta. Mem. 163. 27 p. 1934.Google Scholar
  312. 312.
    McCrea, Adelia. The reactions ofClaviceps purpurea to variations of environment. Am. Jour. Bot.18: 50–78. 1931.CrossRefGoogle Scholar
  313. 313.
    McKinney, H. H. andSando, W. J. Earliness and -seasonal growth habit in wheat, as influenced by temperature and photoperiodism. Jour. Hered.24: 169–179. 1933.Google Scholar
  314. 314.
    McPhee, H. C. The influence of environment on sex in hemp,Cannabis sativa L. Jour. Agr. Res.28: 1067–1080. 1924.Google Scholar
  315. 315.
    Meier, F. E. Effects of intensities and wave lengths of light on unicellular green algae. Smithson. Misc. Coll.92(6): 1–27. 1934.Google Scholar
  316. 316.
    —. Colonial formation of unicellular green algae under various light conditions. Smithson. Misc. Coll.92(5): 1–14. 1934.Google Scholar
  317. 317.
    —. Lethal response of the algaChlorella vulgaris to ultraviolet rays. Smithson. Misc. Coll.92(3): 1–12. 1934.Google Scholar
  318. 318.
    Melas-Joannides, Zoé. La substance phototoxique deYHypericum crispum. Arch. Inst. Pasteur Hellénique2: 161–165. 1928.Google Scholar
  319. 319.
    Mevius, W. Licht und Adventivwurzelbildung bei Commelinaceen. Zeits. Bot.23: 481–509. 1930.Google Scholar
  320. 320.
    Miller, E. C. Plant physiology. 900 p. 1931.Google Scholar
  321. 321.
    Miller, E. S. andBurr, G. O. Carbon dioxide balance at high light intensities. Plant Physiol.10: 93–114. 1935.PubMedGoogle Scholar
  322. 322.
    —,Mackinney, G. andZscheile, F. P. Absorption spectra of alpha and beta carotenes and lycopene. Plant Physiol.10: 375–381. 1935.PubMedGoogle Scholar
  323. 323.
    Miller, J. C. A study of some factors affecting seed stalk development in cabbage. Cornell Univ. Agr. Exp. Sta. Bull. 488. 46 p. 1929.Google Scholar
  324. 324.
    Miller, W. L. Bios. Jour. Chem. Educ.7(2): 257–267. 1930.Google Scholar
  325. 325.
    Mirande, M. Influence de la lumière sur la formation de l’anthocyanine dans les écailles des bulbes de Lis. Compt. Rend. Acad. Sci.175: 496–498. 1922.Google Scholar
  326. 326.
    —. Sur la relation existant entre l’anthocyanine et les oxydases. Compt. Rend. Acad. Sci.175: 595–597. 1922.Google Scholar
  327. 327.
    Mobius, M. Die Farbstoffe der Pflanzen. Berlin, Borntraeger. Handbuch der Pflanzenanatomie hrsg. K. Linsbauer, abt. I, t. 1.6: 1–200. 1927.Google Scholar
  328. 328.
    Mohr, J. C. v. d. Meer. Über die Wirkung von Eosin, Erythrosin- und Methylenblaulösungen auf Keimung und Wachstum einiger Pflanzen. Rec. Trav. Bot. Néerl.23: 245–262. 1926.Google Scholar
  329. 329.
    Montemartini, Luici. Ancora sull’ azione della luce sopra la forza di attrazione del protoplasma per l’acqua. Lavori R. Inst. Bot. Palermo4: 68–83. 1933.Google Scholar
  330. 330.
    Montfort, C. Die photosynthetischen Leistungen litoraler Farbentypen in grösserer Meerestiefe. Jahrb. Wiss. Bot.72: 776–843. 1930.Google Scholar
  331. 331.
    —. Farbe und Stoffgewinn im Meer. Untersuchungen zur Theorie der komplementären Farbenanpassung nordischer Meeresalgen. Jahrb. Wiss. Bot.79: 493–592. 1934.Google Scholar
  332. 332.
    Moore, A. R. andCole, W. H. The response ofPopillia japonica to light and the Weber-Fechner law. Jour. Gen. Physiol.3: 331–335. 1921.CrossRefGoogle Scholar
  333. 333.
    Moore, B., Whitley, E. and Webster, T. A. Studies of photosynthesis in marine algae. 36 Ann. Rep. Oceanog. Dept. L’pool. 1922. Also in Proc. Roy. Soc. London B.92: 51–60. 1921.Google Scholar
  334. 334.
    Moore, T. VitaminA and carotene. I. The association of vitaminA activity with carotene in the carrot root. Biochem. Jour.23: 803–811. 1929.Google Scholar
  335. 335.
    —. VitaminA and carotene. II. The vitaminA activity of red palm oil carotene. Biochem. Jour.23: 1267–1269. 1929.Google Scholar
  336. 336.
    —. VitaminA and carotene. III. The absence of vitaminD from carotene. Biochem. Jour.23: 1270. 1929.Google Scholar
  337. 337.
    Moschkov, B. On the question of photoperiodism of certain woody species. Bull. Appl. Bot., Genet. & Plant Breed. (Russian; Eng. summary)23(2): 479–510. 1930.Google Scholar
  338. 338.
    Muenscher, W. C. Protein synthesis inChlorella. Bot. Gaz.75: 249–267. 1923.CrossRefGoogle Scholar
  339. 339.
    Müller, Anna Marie. Über den Einfluss von Wuchsstoff auf das Austreiben der Seitenknospen und auf die Wurzelbildung. Jahrb. Wiss. Bot.81: 497–540. 1935.Google Scholar
  340. 340.
    Müller, D. Analyse der verminderten Stoffproduktion bei Stickstoffmangel. Planta16: 1–9. 1932.CrossRefGoogle Scholar
  341. 341.
    — undLarsen, P. Analyse der Stoffproduktion bei Stickstoff und Kalimangel. Planta23: 501–517. 1935.CrossRefGoogle Scholar
  342. 342.
    Murneek, A. E. Effects of correlation between vegetative and reproductive functions in the tomato (Lycopersicum esculentum Mill.). Plant Physiol.1: 3–56. 1926.PubMedGoogle Scholar
  343. 343.
    —. Physiology of reproduction in horticultural plants. II. The physiological basis of intermittent sterility with special reference to the spider flower. Mo. Agr. Exp. Sta. Bull.106: 1–37. 1927.Google Scholar
  344. 344.
    —. Nitrogen and carbohydrate distribution in organs of bearing apple spurs. Mo. Agr. Exp. Sta. Res. Bull.119: 1–50. 1928.Google Scholar
  345. 345.
    —. Growth and development as influenced by fruit and seed formation. Plant Physiol.7: 79–90. 1932.PubMedGoogle Scholar
  346. 346.
    —. Relation of carotinoid pigments to sexual reproduction in plants. Science79: 528. 1934.PubMedCrossRefGoogle Scholar
  347. 347.
    Navez, A. E. Growth promoting substance and illumination. Proc. Nat. Acad. Sci.19: 636–637. 1933.PubMedCrossRefGoogle Scholar
  348. 348.
    Navez, A. E. andRubenstein, B. B. Starch hydrolysis as affected by polarized light. Jour. Biol. Chem.80: 503–513. 1928.Google Scholar
  349. 349.
    ——. Starch hydrolysis as affected by light. Jour. Biol. Chem.95: 645–660. 1932.Google Scholar
  350. 350.
    Needham, Joseph. Chemical heterogony and the ground-plan of animal growth. Biol. Rev. & Proc. Cambridge Phil. Soc.9: 79–109. 1934.CrossRefGoogle Scholar
  351. 351.
    Nemec, A. etGracanin, M.. Influence de la lumière sur l’absorption de l’acide phosphorique et du potassium par les plantes. Compt. Rend. Acad. Sci.182: 806–808. 1926.Google Scholar
  352. 352.
    --. Der Einfluss des Lichtes auf die Resorption von Kali- und Phosphorsäure bei Neubaueruntersuchungen. Zeits. Pflanzenernahrung Dung. u. Bodenk. A. Wissensch. Teil.16: 102–110. 1930.Google Scholar
  353. 353.
    Newcombe, F. C. Twining of plants as related to withdrawal of light. Science39: 294. 1914.Google Scholar
  354. 354.
    Nienburg, W. Die Keimungsrichtung von Fucus-eiern und die Theorie der Lichtperzeption. Ber. Deut. Bot. Ges.40: 38–40. 1922.Google Scholar
  355. 355.
    Niethammer, A. Über die Wirkung von Photokatalysatoren auf das Frühtreiben ruhender Knospen und auf die Samenkeimung. Biochem Zeits.158: 278–305. 1925.Google Scholar
  356. 356.
    —. Keimungphysiologische Studien unter Hervorhebung des Lichtkeimungsproblems. Biochem. Zeits.185: 205–215. 1927.Google Scholar
  357. 357.
    —. Licht, Dunkelheit und Strahlung als Faktoren bei der Samen-keimung. Tabulae Biol. Period.4: 45–77. 1934.Google Scholar
  358. 358.
    Nightingale, G. T. Light in relation to growth and chemical composition of some horticultural plants. Proc. Am. Soc. Hort. Sci.19: 18–29. 1933.Google Scholar
  359. 359.
    —. The chemical composition of plants in relation to photoperiodic changes. Univ. Wis. Agr. Exp. Sta. Res. Bull.74: 1–68. 1927.Google Scholar
  360. 360.
    — andSchermerhorn, L. G. Nitrate utilization by asparagus in the absence of light. Science64: 282. 1926.PubMedCrossRefGoogle Scholar
  361. 361.
    ——. Nitrate assimilation by asparagus in the absence of light. N. J. Agr. Exp. Sta. Bull.476: 1–24. 1928.Google Scholar
  362. 362.
    —, — andRobbins, W. R. The growth status of the tomato as correlated with organic nitrogen and carbohydrates in roots, stems, and leaves. N. J. Agr. Exp. Sta. Bull.461: 1–38. 1928.Google Scholar
  363. 363.
    Nikolic, M. Über den Einfluss des Lichtes auf die Keimung vonPhacelia tanacetifolia. Sitzungsb. Akad. Wiss. Wien. Math.-Naturw. Kl. Abt. 1.133: 625–641. 1924.Google Scholar
  364. 364.
    Noguchi, Y. On the control of flowering time of paddy rice plants by the action of light. Proc. Crop Sci. Soc. Japan2: 153–160. 1930.Google Scholar
  365. 365.
    Noll, F. Ueber rotirende Nutation an etiolierten Keimpflanzen. Bot. Zeit.43: 664–670. 1885.Google Scholar
  366. 366.
    Norris, Robert J. Observation on the development of chlorophyll and carotinoid pigments in etiolated plants. Bull. Basic Sci., Univ. Cincinnati5: 23–32. 1933.Google Scholar
  367. 367.
    Nuernbergk, Erich. Physikalische Methoden der pflanzlichen Lichtphysiologie. Handbuch der biol. Arbeitsmethoden E. Abderhalden. Abt. XI, Teil4: 739–950. 1932.Google Scholar
  368. 368.
    Odén, S. Plant growth in electric light. Medd. K. Landtbruksakad. Skogs-o. Trädgardsavd.I. 161 p. (English summary p. 135–138). 1929.Google Scholar
  369. 369.
    —,Köhler, G. andNilsson, G. Plant cultivation with the aid of electric light. A report on investigations in Sweden. Proc. Int. Illumin. Cong. (Great Britain)2: 1298–1326. 1932.Google Scholar
  370. 370.
    Onslow, M. W. The anthocyanin pigments of plants. 314 p. 1925.Google Scholar
  371. 371.
    Orcutt, F. S. andFred E. B. Light as an inhibiting factor in the fixation of atmospheric nitrogen by Manchu soy beans. Jour. Am. Soc. Agron.27: 550–558. 1935.Google Scholar
  372. 372.
    Osterhout, W. J. V. Physiological studies of single plant cells. Biol. Rev. & Biol. Proc. Cambridge Phil. Soc.6: 369–411. 1931.CrossRefGoogle Scholar
  373. 373.
    Overbeek, J. van. An analysis of phototropism in dicotyledons. Proc. Kon. Akad. Wetensch. Amsterdam35: 1325–1335. 1932.Google Scholar
  374. 374.
    —. Wuchsstoff, Lichtwachstumsreaktion und Phototropismus bei Raphanus. Rec. Trav. Bot. Néerl.30: 537–626. 1933.Google Scholar
  375. 375.
    Paauw, F. van der. The indirect action of external factors on photosynthesis. Rec. Trav. Bot. Néerl.29: 497–620. 1932.Google Scholar
  376. 376.
    —. Der Einfluss der Temperatur auf Atmung und Kohlensäureassimilation einiger Grünalgen. Planta22: 396–403. 1934.CrossRefGoogle Scholar
  377. 377.
    Packard, C. The effect of light on the permeability ofParamecium. Jour. Gen. Phvsiol.7: 363–372. 1925.CrossRefGoogle Scholar
  378. 378.
    Paetz, K. W. Untersuchungen über die Zusammenhänge zwischen stomatärer Öffhungsweite und bekannten Intensitäten bestimmter Spektralbezirke. Planta10: 611–665. 1930.CrossRefGoogle Scholar
  379. 379.
    Palmer, L. S. Carotinoids and related pigments. 316 p. 1922.Google Scholar
  380. 380.
    Panchaud, J. Mlle. Action du milieu extérieur sur le métabolisme végétal. II. L’absorption de la matière minérale et l’élaboration de la matière organique chez une plante herbacée dévelopé à des intensités lumineuses différentes. Rev. Gén. Bot.46: 586–603. 1934.Google Scholar
  381. 381.
    Parija, P. andSaran, A. B. The effect of light on the respiration of starved leaves. Ann. Botany48: 347–354. 1934.Google Scholar
  382. 382.
    Pearce, G. W. andStreeter, L. R. A report on the effect of light on pigment formation in apples. Jour. Biol. Chem.92: 743–749. 1931.Google Scholar
  383. 383.
    Pearsall, W. H. Growth Studies. VI. On the relative sizes of growing plant organs. Ann. Botany41: 549–556. 1927.Google Scholar
  384. 384.
    — andHanby, A. M. The variation of leaf form inPotamogeton perfoliatus. New Phyt.24: 112–120. 1925.CrossRefGoogle Scholar
  385. 385.
    Pekarek, J. Ueber die Aziditätsverhältnisse in den Epidermis- und Schliesszellen beiRumex acetosa im Licht und im Dunkeln. Planta21: 419–446. 1933.CrossRefGoogle Scholar
  386. 386.
    Penfound, W. T. Plant anatomy as conditioned by light intensity and soil moisture. Am. Jour. Bot.18: 558–572. 1931.CrossRefGoogle Scholar
  387. 387.
    —. The anatomy of the castor bean as conditioned by light intensity and soil moisture. Am. Jour. Bot.19: 538–546. 1932.CrossRefGoogle Scholar
  388. 388.
    Peto, F. H. The cause of bolting in Swede turnips (Brassica napus var.napobrassica (L.) Peterm.) Canad. Jour. Res.11: 733–750. 1934.Google Scholar
  389. 389.
    Petri, L. eCecco, M. de. Ricerche sulle sostanze fluorescenti delle piante in rapporte al alcuni fenomeni di fotolici. Boll. R. Staz. Patol. Veg-Roma8: 374–406. 1928.Google Scholar
  390. 390.
    Pfeiffer, Norma E. Microchemical and morphological studies of effect of light on plants. Bot. Gaz.81: 173–195. 1926.CrossRefGoogle Scholar
  391. 391.
    —. Anatomical study of plants grown under glasses transmitting light of various ranges of wave lengths. Bot. Gaz.85: 427–436. 1928.CrossRefGoogle Scholar
  392. 392.
    Pierce, G. J. andRandolph, F. A. Studies of irritability in algae. Bot. Gaz.40: 321–350. 1905.CrossRefGoogle Scholar
  393. 393.
    Pincussen, L. Fermente und Licht. I. Diastase. Biochem. Zeits.134: 459–469. 1923.Google Scholar
  394. 394.
    -. Photobiologie. 543 p. 1930.Google Scholar
  395. 395.
    -. Methodik der biologischen Lichtwirkungen. AbderhaldenHandb. Biol. Arb. Meth. Lief. 413, Ab., V, Teil 10, Hefte1: 13–85. 1933.Google Scholar
  396. 396.
    Platenius, H. Carbohydrate and nitrogen metabolism in the celery plant as related to premature seeding. Cornell Agr. Exp. Sta. Mem. 140: 66 p. 1932.Google Scholar
  397. 397.
    Plitt, Thora M. Some photoperiodic and temperature responses of the radish. Plant Physiol.7: 337–339. 1932.PubMedGoogle Scholar
  398. 398.
    Pobedimova;E. G. Einwirkung der elektrischen Beleuchtung auf die Entwicklung derStellaria media (L.) Cyr. Izv. Glavn. Bot. Sada SSSR. (Bull. Jard. Bot. Prin. URSS.)28: 75–94. 1929.Google Scholar
  399. 399.
    Pollacci, G. Sul parziale albinismo del frumento. Italia Agr.68: 435–438. 1931.Google Scholar
  400. 400.
    Popp, H. W. Effect of light intensity on growth of soy beans and its relation to the auto-catalyst theory of growth. Bot. Gaz.82: 306–319. 1926.CrossRefGoogle Scholar
  401. 401.
    —. A physiological study of the effect of light of various ranges of wave length on the growth of plants. Am. Jour. Bot.13: 706–736. 1926.CrossRefGoogle Scholar
  402. 402.
    — andBrown, F. A review of recent work on the effect of ultra-violet radiation upon seed plants. Bull. Torrey Bot. Club60: 161–210. 1933.CrossRefGoogle Scholar
  403. 403.
    Porterfield, W. M. A study of the grand period of growth in bamboo. Bull. Torrey Bot. Club55: 327–405. 1928.CrossRefGoogle Scholar
  404. 404.
    Potter, G. F. and Phillips, T. G. Composition and fruit bud formation in non-bearing spurs of the Baldwin apple. N. H. Agr. Exp. Sta. Tech. Bull.42: 42 p. 1930.Google Scholar
  405. 405.
    Powell, Doris. The development and distribution of chlorophyll in roots of flowering plants grown in the light. Ann. Botany39: 503–513. 1925.Google Scholar
  406. 406.
    Prescher, W. Über die photodynamische Wirkung des Eosins auf die Wurzelspitzen vonVicia faba. Planta17: 461–488. 1932.CrossRefGoogle Scholar
  407. 407.
    Priestley, J. H. Light and growth. I. The effect of brief light exposure upon etiolated plants. New Phyt.24: 271–283. 1925.CrossRefGoogle Scholar
  408. 408.
    —. Light and growth. II. On the anatomy of etiolated plants. New Phyt.25: 145–170. 1926.CrossRefGoogle Scholar
  409. 409.
    —. Light and growth. III. An interpretation of phototropic growth curvatures. New Phyt.25: 213–247. 1926.CrossRefGoogle Scholar
  410. 410.
    —. The meristematic tissues of the plant. Biol. Rev. Cambridge Phil. Soc.3: 1–20. 1928.CrossRefGoogle Scholar
  411. 411.
    —. The biology of the living chloroplast. New Phyt.28: 197–217. 1929.CrossRefGoogle Scholar
  412. 412.
    —. Studies in the physiology of cambial activity. III. The seasonal activity of the cambium. New Phyt.29: 316–354. 1930.CrossRefGoogle Scholar
  413. 413.
    Priestley, J. H. andEwing, J. Physiological studies in plant anatomy. VI. Etiolation. New Phyt.22: 30–44. 1923.CrossRefGoogle Scholar
  414. 414.
    Probst, Siegmund. Über den Einfluss einer Sprossbelichtung auf das Wurzelwachstum und denjenigen einer Wurzelbelichtung auf das Sprosswachstum. Planta4: 651–709. 1927.CrossRefGoogle Scholar
  415. 415.
    Pulling, H. E. Sunlight and its measurement. Plant World22: 151–171, 187–209. 1919.Google Scholar
  416. 416.
    Purvis, O. N. An analysis of the influence of temperature during germination on the subsequent development of certain winter cereals and its relation to the effect of length of day. Ann. Botany48: 919–955. 1934.Google Scholar
  417. 417.
    Ramaley, Francis. Some Caryophyllaceous plants influenced in growth and structure by artificial illumination supplemental to daylight. Bot. Gaz.92: 311–320. 1931.CrossRefGoogle Scholar
  418. 418.
    —. Influence of supplemental light on blooming. Bot. Gaz.96: 165–174. 1934.CrossRefGoogle Scholar
  419. 419.
    Ramshorn, K. Zur electrophysiologischen Theorie des Wachstums bei Pflanzen. Ber. Sächs. Ges. (Akad.) Wiss. Verh. Math.-Phys. Kl., Leipzig86: 199–206. 1934.Google Scholar
  420. 420.
    -. Experimentalle Beiträge zur elektrophysiologischen Wachstumstheorie. Planta 22: 737–766.Google Scholar
  421. 421.
    Rao, L. Quantitative Untersuchungen über die Wirkung des Lichtes auf die Samenkeimung vonLythrum salicaria. Jahrb. Wiss. Bot.64: 249–280. 1925.Google Scholar
  422. 422.
    Rasmusson, J. Studies on the inheritance of quantitative characters inPisum. I. Preliminary note on the genetics of time of flowering. Hereditas20: 161–180. 1935.CrossRefGoogle Scholar
  423. 423.
    Rasumov, V. I. Über die photoperiodische Nachwirkung in Zusammenhang mit der Wirkung verschiedener Aussaattermine auf die Pflanzen. Planta10: 345–373. 1930.CrossRefGoogle Scholar
  424. 424.
    —. Influence of alternate day length on tuber formation. (Russian; Eng. summary.) Bull. Appl. Bot., Genet. & Plant Breed.27: 3–46. 1931.Google Scholar
  425. 425.
    —. On the localization of photoperiodical stimulation. (Russian; Eng. summary.)Bull. Appl. Bot., Genet. & Plant Breed.27: 249–282. 1931.Google Scholar
  426. 426.
    —. The significance of the quality of light in photoperiodical response. (Russian; Eng. summary.) Bull. Appl. Bot., Genet. & Plant Breed. III. Ser. Phys., Biochem. & Anat. Plants3: 217–251. 1933.Google Scholar
  427. 427.
    —. Ueber die Lokalisierung der photoperiodischen Reizwirkung. Planta23: 384–414. 1935.CrossRefGoogle Scholar
  428. 428.
    Rayleigh, Selective action of polarized light upon starch grains. Nature117: 15. 1926.CrossRefGoogle Scholar
  429. 429.
    Redington, George. The effect of the duration of light upon the growth and development of the plant. Biol. Rev. & Proc. Cambridge Phil. Soc.4: 180–208. 1929.CrossRefGoogle Scholar
  430. 430.
    — A study of the effect of diurnal periodicity upon plant growth. Trans. Roy. Soc. Edin.56: 247–272. 1929–30.Google Scholar
  431. 431.
    Reep, H. S. Quantitative aspects of the problem of growth and differentiation. Proc. Int. Cong. Plant Sci., Ithaca2: 1095–1106. 1926.Google Scholar
  432. 432.
    —. The density of stomata inCitrus leaves. Jour. Agr. Res.43: 209–222. 1931.Google Scholar
  433. 433.
    Reid, M. E. Relation of kind of food reserves to regeneration in tomato plants. Bot. Gaz.77: 103–110. 1924.CrossRefGoogle Scholar
  434. 434.
    —. Quantitative relations of carbohydrates to nitrogen in determining growth responses in tomato cuttings. Bot. Gaz.77: 404–18. 1924.CrossRefGoogle Scholar
  435. 435.
    —. Growth of seedling in relation to composition of seed. Bot. Gaz.81: 196–203. 1926.CrossRefGoogle Scholar
  436. 436.
    —. Growth of seedlings in light and in darkness in relation to available nitrogen and carbon. Bot. Gaz.87: 81–118. 1929.CrossRefGoogle Scholar
  437. 437.
    —. Relation of composition of seed and the effects of light to growth of seedlings. Am. Jour. Bot.16: 747–769. 1929.CrossRefGoogle Scholar
  438. 438.
    —. The influence of nutritive conditions of seeds and cuttings upon the development of roots. Rep. & Proc. Int. Hort. Cong., London1930: 165–169. 1931. Also in Gard. Chron. III88: 392–393. 1930.Google Scholar
  439. 439.
    Robbins, W. J. andManeval, W. E. Effect of light on growth of excised root tips under sterile conditions. Bot. Gaz.78: 424–432. 1924.CrossRefGoogle Scholar
  440. 440.
    Roberts, R. H. andKraus, James E. Respiratory types and photoperiodism. Science80: 122–123. 1934.PubMedCrossRefGoogle Scholar
  441. 441.
    Robinson, Gertrude M. andRobinson, Robert. A survey of anthocyanins. Biochem. Jour.25: 1687–1705, 1931;26: 1647–1664, 1932;27: 206–212, 1933.Google Scholar
  442. 442.
    ——. A survey of anthocyanins, IV. Biochem. Jour.28: 1712–1720. 1934.Google Scholar
  443. 443.
    Roelofsen, P. A. On photosynthesis of the Thiorhodaceae. Rotterdam N, De Voorpost, 1935, 127 p.Google Scholar
  444. 444.
    Roodenburg, J. W. M. Kuntslichtkultur. Angew. Bot.13: 162–166. 1931.Google Scholar
  445. 445.
    Rosene, H. F. Proof of the principle of summation of cell E M Fs. Plant Physiol.10: 209–224. 1935.PubMedGoogle Scholar
  446. 446.
    Rosenheim, O. Biochemical changes due to environment. Biochem. Jour.12: 283–289. 1918.Google Scholar
  447. 447.
    Rudolph, H. Über die Einwirkung des Farbigenlichtes auf die Entstehung der Chloroplastenfarbstoffe. Planta21: 104–155. 1933.CrossRefGoogle Scholar
  448. 448.
    Rudorf, W. andStelzner, G. Untersuchungen über Lichtperiodische- und Temperatur-nachwirkung bei Sorten von Salat (Lactuca sativa var.capitata L.) und die Möglichkeit ihrer Ausnutzung im Gemüsebau. Gartenbauwiss.9: 142–153. 1934.Google Scholar
  449. 449.
    Ruhland, W. Untersuchungen über den Kohlenhydratstoffwechsel vonBeta vulgaris. Jahrb. Wiss. Bot.50: 200–257. 1911.Google Scholar
  450. 450.
    Russell, W. C. The effect of the curing process upon the vitaminA andD content of alfalfa. Jour. Biol. Chem.85: 289–297.Google Scholar
  451. 451.
    Rygh, O. Occurrence of antirachitic vitamin in green plants. Nature133: 255. 1934.CrossRefGoogle Scholar
  452. 452.
    Sachs, J. von. Über den Einfluss der Lufttemperatur und des Tageslichts auf die stündlichen und täglichen Aenderungen des Längenwachstums (Streckung) der Internodien. Arb. Bot. Inst. Würzburg1: 99–192. 1874.Google Scholar
  453. 453.
    —. Stoff und Form der Pflanzenorgane. Arb. Bot. Inst. Würzburg2: 452–488, 689–718. 1880/1882.Google Scholar
  454. 454.
    Sande-Bakhuyzen, H. L. van de. Studies upon wheat grown under constant conditions. Plant Physiol.3: 1–30. 1928.PubMedGoogle Scholar
  455. 455.
    Sando, C. E. Autumnal coloring. Indus. & Eng. Chem. (News Ed.)9: 338. 1931.Google Scholar
  456. 456.
    Sayre, J. D. The development of chlorophyll in seedlings in different ranges of wave lengths of light. Plant Physiol.3: 71–77. 1928.PubMedGoogle Scholar
  457. 457.
    —. Opening of stomata in different ranges of wave lengths of light. Plant Physiol.4: 323–328. 1929.PubMedGoogle Scholar
  458. 458.
    Scarth, G. W. Stomatal movement: its regulation and regulatory rôle. Protoplasma2: 498–511. 1927.CrossRefGoogle Scholar
  459. 459.
    —. Mechanism of the action of light and other factors on stomatal movement. Plant Physiol.7: 481–504. 1932.PubMedGoogle Scholar
  460. 460.
    Schaffner, J. H. The change of opposite to alternate phyllotaxy and repeated rejuvenations in hemp by means of changed photoperiodicity. Ecology7: 315–325. 1926.CrossRefGoogle Scholar
  461. 461.
    —. Sex and sex determination in the light of observations and experiments on dioecious plants. Am. Nat.61: 319–332. 1927.CrossRefGoogle Scholar
  462. 462.
    —. Sex reversal and the experimental production of neutral tassels inZea mays. Bot. Gaz.90: 279–298. 1930.CrossRefGoogle Scholar
  463. 463.
    —. The fluctuation curve of sex reversal in staminate hemp plants induced by photoperiodicity. Am. Jour. Bot.18: 424–430 1931.CrossRefGoogle Scholar
  464. 464.
    Schanderl, H. andKaempfert, W. Über die Strahlungsdurchlässigkeit von Blättern und Blattgeweben. Planta18: 700–750. 1933.CrossRefGoogle Scholar
  465. 465.
    Schappelle, N. A. A study to determine the range of wave length most effective in stimulating reproductive growth inMarchantia. Am. Jour. Bot.20: 677. 1933.Google Scholar
  466. 466.
    Scharrer, K. and Schropp, W. Ueber die Wirkung des Kalium-ions bei Mangeln der Lichtversorgung. Zeits. Pflanzenernähr. Dung. u. Bodenk. A, Wiss. Teil35: 185–193. 1934.Google Scholar
  467. 467.
    Schechter, V. Electrical control of rhizoid formation in the red alga,Griffithsia Bornetiana. Jour. Gen. Physiol.18: 1–21. 1934.CrossRefGoogle Scholar
  468. 468.
    Schertz, F. M. The chloroplast pigments, their functions, and the probable relation of chlorophyll to the vitamins. Quart. Rev. Biol.3: 459–485. 1928.CrossRefGoogle Scholar
  469. 469.
    —. The quantitative determination of chlorophyll. Plant Physiol.3: 323–334. 1928.PubMedGoogle Scholar
  470. 470.
    Schick, R. Der Einfluss der Tageslange auf die Knollenbildung der Kartoffel. Der Züchter3: 365–369. 1931.Google Scholar
  471. 471.
    Schmid, E. Ueber den Einfluss des Lichtes auf die Keimung der Lebermoossporen. Ber. Schweiz Bot. Ges.41: 9–72. 1932.Google Scholar
  472. 472.
    Schmucker, T. Über Assimilation der Kohlensäure in verschiedenen Spektralbezirken. (Die Energieaufnahme als Quantenvorgang.) Jahrb. Wiss. Bot.73: 824–852. 1930.Google Scholar
  473. 473.
    Schneider, E. Beiträge zur Physiologie der Farbstoffe der Purpurbakterien. Beitr. Biol. Pflanz. (Cohn)18: 81–115. 1934.Google Scholar
  474. 474.
    Schoder, A. Ueber die Beziehungen des Tagesganges der Kohlensäureassimilation von Frielandpflanzen zu den Aussenfaktoren. Jahrb. Wiss. Bot.76: 441–484. 1932.Google Scholar
  475. 475.
    Schou, S. A. Über die Lichtabsorption einiger anthocyanidine. Helvetica Chim. Acta10: 907–915. 1927.CrossRefGoogle Scholar
  476. 476.
    Schrader, A. L. The relation of chemical composition to the regeneration of roots and tops on tomato cuttings. Proc. Am. Soc. Hort. Sci.21(1924): 187–194. 1925.Google Scholar
  477. 477.
    Schröppel, F. Katalase, Peroxidase und Atmung bei der Keimung lichtempfindlicher Samen vonNicotiana tabacum. Beih. Bot. Centralbl.51: 377–407. 1933.Google Scholar
  478. 478.
    Schüepp, O. Meristeme. 114 p., 1926.Google Scholar
  479. 479.
    Schulz, E. R. andThompson, N. F. Chemical composition of etiolated and greenBerberis sprouts and their respective roots. Bot. Gaz.81: 312–322. 1926.CrossRefGoogle Scholar
  480. 480.
    Schweickerdt, Herold. Untersuchungen über Photodinese beiVallisneria spiralis. Jahrb. Wiss. Bot.68: 79–134. 1928.Google Scholar
  481. 481.
    Scott, L. I. andPriestley, J. H. The root as an absorbing organ. I. A reconsideration of the entry of water and salts in the absorbing region. New Phyt.27: 125–140. 1928.Google Scholar
  482. 482.
    Sellei, J. Die wachstumfördernde und hemmende Wirkung der Farbstoffe auf Pflanzen. Arch. Pharm. Ber. Deut. Pharm. Ges.273: 285–288. 1935.Google Scholar
  483. 483.
    Semmens, E.S. Hydrolysis in the living plant by polarized light. Bot. Gaz.90: 412–126. 1930.CrossRefGoogle Scholar
  484. 484.
    —. Bursting of cell by polarized light. Nature134: 813. 1934.CrossRefGoogle Scholar
  485. 485.
    Seybold, A. Über die optischen Eigenschaften der Laubblätter. IV. Planta21: 251–265. 1933.CrossRefGoogle Scholar
  486. 486.
    —. Über den Lichtgenuss der Sonnen- und Schattenpflanzen. Ber. Deut. Bot. Ges.52: 493–505. 1934.Google Scholar
  487. 487.
    —. Ueber die Lichtenergiebilanz submerser Wasserpflanzen, vornehmlich der Meeresalgen. Jahrb. Wiss. Bot.79: 593–654. 1934.Google Scholar
  488. 488.
    Sharp, L. W. Introduction to cytology. 567 p. 1934.Google Scholar
  489. 489.
    Sheard, Charles. Potentiometric and spectrophotometric changes in plants produced by infra-red and ultra-violet irradiation. Proc. Soc. Exp. Biol. & Med.26: 618–621. 1929.Google Scholar
  490. 490.
    Shirley, H. L. The influence of light intensity and light quality upon the growth of plants. Am. Jour. Bot.16: 354–390. 1929.CrossRefGoogle Scholar
  491. 491.
    —. Light intensity in relation to plant growth in a virgin Norway pine forest. Jour. Agr. Res.44: 227–244. 1932.Google Scholar
  492. 492.
    —. Light as an ecological factor and its measurement. Bot. Rev.1: 355–381. 1935.CrossRefGoogle Scholar
  493. 493.
    Shuck, A. L. A growth-inhibiting substance in lettuce seeds. Science81: 236. 1935.PubMedCrossRefGoogle Scholar
  494. 494.
    —. Light as a factor influencing the dormancy of lettuce seeds. Plant Physiol.10: 193–196. 1935.PubMedGoogle Scholar
  495. 495.
    Shull, C. A. A spectrophotometric study of reflection of light from leaf surfaces. Bot. Gaz.87: 583–607. 1929.CrossRefGoogle Scholar
  496. 496.
    Siebert, Alfred. Ergrünungsfähigkeit von Wurzeln. Beih. Bot. Centralbl.37: 185–215. 1920.Google Scholar
  497. 497.
    Sierp, H. Untersuchungen über die Öffnungsbewegungen der Stomata in verschiedenen Spektralbezirken. Flora128: 269–285. 1933.Google Scholar
  498. 498.
    Simon, S. V. Über den Einfluss des Lichtes auf die Entwicklung der Keimlinge vonBruguiera eriopetala. Ber. Deut. Bot. Ges.39: 165–172. 1921.Google Scholar
  499. 499.
    Sisa, M. Influence of the C/N ratio on growth of tomato cuttings. Agr. et Hort.3: 1422–1431. 1928.Google Scholar
  500. 500.
    Skoog, F. The effect of x-rays on growth substance and plant growth. Science79: 256. 1934.PubMedCrossRefGoogle Scholar
  501. 501.
    Skutch, A. F. Some reactions of the banana to pressure, gravity and darkness. Plant Physiol.6: 73–102. 1931.PubMedGoogle Scholar
  502. 502.
    Smirnov, E. andZhelochovtsev, A. N. Das Gesetz der Altersveränderungen der Blattform beiTropaeolum majus L. unter verschiedenen Beleuchtungsbedingungen. Planta15: 299–354. 1931.CrossRefGoogle Scholar
  503. 503.
    Smith, E. Philip andJolly, M. S. Stomatal movement and hydrogen-ion concentration. Nature129: 544. 1932.CrossRefGoogle Scholar
  504. 504.
    Smith, F. Researches on the influence of natural and artificial light on plants. I. On the influence of the length of day—preliminary researches. Meld. Norg. Landbrukshoiskole13: 1–228. 1933.Google Scholar
  505. 505.
    Smith, Laura Lee andMorgan, A. F. The effect of light upon the vitaminA activity and the carotinoid content of fruits. Jour. Biol. Chem.101: 43–54. 1933.Google Scholar
  506. 506.
    — andSmith, O. Light and the carotinoid content of certain fruits and vegetables. Plant Physiol.6: 265–275. 1931.PubMedGoogle Scholar
  507. 507.
    Smith, Margaret C. andBriggs, I. A. The vitaminA content of alfalfa as affected by exposure to sunshine in the curing process. Jour. Agr. Res.46: 229–234. 1933.Google Scholar
  508. 508.
    —, —. The antirachitic value of alfalfa as affected by exposure to sunshine in the curing process. Jour. Agr. Res.46: 235–240. 1933.Google Scholar
  509. 509.
    Snow, R. The nature of the cambial stimulus. New Phyt.32: 288–296. 1933.CrossRefGoogle Scholar
  510. 510.
    — andLe Fanu, B. Activation of cambial growth. Nature135: 149. 1935.CrossRefGoogle Scholar
  511. 511.
    —, —. Activation of cambial growth by pure hormones. Nature135: 876. 1935.CrossRefGoogle Scholar
  512. 512.
    Snyder, C. D. Quantitative relations in biological processes and the radiation hypothesis of chemical activation. Quart. Rev. Biol.6: 281–305. 1931.CrossRefGoogle Scholar
  513. 513.
    Spoehr, H. A. Variations in respiratory activity in relation to sunlight. Bot. Gaz.59: 366–386. 1915.CrossRefGoogle Scholar
  514. 514.
    -. Photosynthesis. 393 p. 1926.Google Scholar
  515. 515.
    Spohn, H. Ueber die optischen Eigenschaften herbstlich gefärbter Laubblätter. Planta23: 240–248. 1934.CrossRefGoogle Scholar
  516. 516.
    Stair, R. andCoblentz, W. W. Infra-red absorption spectra of some plant pigments. U. S. Bur. Stand. Jour. Res.11: 703–711. 1933.Google Scholar
  517. 517.
    Stanbury, F. A. The effect of light of different intensities, reduced selectively and non-selectively upon the rate of growth ofNitsschia closterium. Jour. Mar. Biol. Assoc. United Kingdom17: 633–653. 1931.Google Scholar
  518. 518.
    Steenbock, H. andBlack, A. Fat-soluble vitamins. XXIII. The induction of growth promoting and calcifying properties in fats and their unsaponifiable constituents by exposure to light. Jour. Biol. Chem.64: 263–298. 1925.Google Scholar
  519. 519.
    Steinbauer, George P. Growth of tree seedlings in relation to light intensity and concentration of nutrient solution. Plant Physiol.7: 742–745. 1932.PubMedGoogle Scholar
  520. 520.
    Stephan, J. Der Einfluss von Lichtqualität und-quantität (einschliesslich ultra-rot) auf das Wachstum der Brutkörper vonMarchantia polymorpha. Planta6: 510–518. 1928.CrossRefGoogle Scholar
  521. 521.
    —. Entwicklungsphysiologische Untersuchungen an einigen Farnen. I. Jahrb. Wiss. Bot.70: 707–742. 1929.Google Scholar
  522. 522.
    Stern, K. Elektrophysiologie der Pflanzen. 219 p. 1924.Google Scholar
  523. 523.
    Steward, F. C. The mineral nutrition of plants. Ann. Rev. Biochem.4: 519–544. 1935.CrossRefGoogle Scholar
  524. 524.
    Stewart, W. D. andArthur, J. M. Some effects of radiation from a quartz mercury vapor lamp upon the mineral composition of plants. Contr. Boyce Thompson Inst. Plant Res.6: 225–245. 1934.Google Scholar
  525. 525.
    Stiles, W. Permeability. 296 p. 1924. (Rep. from New Phyt.20–22, 1921–1923).Google Scholar
  526. 526.
    -. Photosynthesis. 268 p. 1925.Google Scholar
  527. 527.
    Street, O. E. Carbohydrate-nitrogen and base element relationships of peas grown in water culture under various light exposures. Plant Physiol.9: 301–322. 1934.PubMedGoogle Scholar
  528. 528.
    Streeter, L. R. andPearce, G. W. Light and pigment development in apples. Proc. Am. Soc. Hort. Sci.28: 49–52. 1932.Google Scholar
  529. 529.
    Svedberg, The andKatsubai, T. The molecular weights of phycocyan and of phycoerythrin fromPorphyra tenera and phycocyan fromAphanizomenon flos-aquae. Tour. Am. Chem. Soc.51: 3573–3583. 1929.CrossRefGoogle Scholar
  530. 530.
    Tageeva, S. A study of photosynthesis in connection with photoperiodism. Bull. Appl. Bot., Genet. & Plant Breed.27: 197–247. 1931.Google Scholar
  531. 531.
    Tang, P. S. The effects of CO and light on the oxygen consumption and on the production of CO2 by germinating seeds ofLupinus albus. Jour. Gen. Physiol.15: 655–665. 1932.CrossRefGoogle Scholar
  532. 532.
    Tedin, Olof. Effect of full light, darkness and violet light on the germination of tomato seed. Nord. Jordbrugsforskn. (Kobenhavn) Heft. 2/3: 108–126. 1931.Google Scholar
  533. 533.
    Teodoresco, E. C. Observations sur la croissance des plantes aux lumières de diverses longueurs d’onde. Ann. Sci. Nat. Bot.11: 201–335. 1929.Google Scholar
  534. 534.
    —. Le développement des algues et la réfrangibilité de la lumière. Rev. Gén. Bot.46: 65–74, 172–192, 229–256, 289–320, 360–384. 1934.Google Scholar
  535. 535.
    Theorell, H. Über die Wirkungsgruppe des gelben Ferments. Biochem. Zeit.275: 37. 1934.Google Scholar
  536. 536.
    Thimann, K. V. andSkoog, F. On the inhibition of bud development and other functions of growth-substance inVicia faba. Proc. Roy. Soc. London B.114: 317–339. 1934.Google Scholar
  537. 537.
    Thoday, D. Some physiological aspects of differentiation. New Phyt.32: 274–287. 1933.CrossRefGoogle Scholar
  538. 538.
    Thompson, H. C. Premature seeding of celery. Cornell Agr. Exp. Sta. Bull. 480: 50 p. 1929.Google Scholar
  539. 539.
    —. The effect of temperature and’ photoperiod on the growth of lettuce. Proc. Am. Soc. Hort. Sci.30: 507–509. 1934.Google Scholar
  540. 540.
    Tiedjens, Victor A. Sex ratios in cucumber flowers as affected by different conditions of soil and light. Jour. Agr. Res.36: 721–746. 1928.Google Scholar
  541. 541.
    Tilly, F. Ueber Sensibilisierung und Desensibilisierung lichtempfindlicher Samen (Lythrum salicaria L.) Zeits. Bot.28: 401–445. 1935.Google Scholar
  542. 542.
    Tincker, M. A. H. The effect of length of day upon the growth and chemical composition of the tissues of certain economic plants. Ann. Botany42: 101–140. 1928.Google Scholar
  543. 543.
    — andDarbishire, F. V. Studies on the formation of tubers and other storage organs. The influence upon translocation of the period of light and the supply of potassium. Ann. Botany47: 27–53. 1933.Google Scholar
  544. 544.
    Tolmachev, Ivan. Effect of darkness and light on the organic acids in the plant. Zapiski Kiiv. Sil’s ’Ko-Gospod. Inst. (Kyiv. Agr. Inst. Mem.)2: 1–21. 1927.Google Scholar
  545. 545.
    Tottingham, W. E. Are leaf lipids responsive to solar radiation? Science75: 223–224. 1932.PubMedCrossRefGoogle Scholar
  546. 546.
    — andLease, E. J. A photochemical aspect of nitrate assimilation in plants. Science80: 615–616. 1934.PubMedCrossRefGoogle Scholar
  547. 547.
    Tottingham, W. E. andLowsma, H. Effects of light upon nitrate assimilation in wheat. Jour. Am. Chem. Soc.50: 2436–2445. 1928.CrossRefGoogle Scholar
  548. 548.
    —,Stephens, H. L. andLease, E. J. Influence of shorter light rays upon absorption of nitrate by the young wheat plant. Plant Physiol.9: 127–142. 1934.PubMedCrossRefGoogle Scholar
  549. 549.
    Trelease, S. F. Night and day rates of elongation of banana leaves. Phillipine Jour. Sci.23: 85–96. 1923.Google Scholar
  550. 550.
    Trumpf, C. Ueber den Einfluss intermittierender Belichtung auf das Etiolement der Pflanzen. Bot. Arch.5: 381–410. 1924.Google Scholar
  551. 551.
    —. Ueber das Wachstum vonPhaseolus-Keimlingen im Presssaft normaler und etiolierter Pflanzen. Bot. Arch.5: 410–412. 1924.Google Scholar
  552. 552.
    Tschudy, R. H. Depth studies on photosynthesis of the red algae. Am. Jour. Bot.21: 546–556. 1934.CrossRefGoogle Scholar
  553. 553.
    Ulvin, G. B. Chlorophyll production under various environmental conditions. Plant Physiol.9: 59–81. 1934.PubMedGoogle Scholar
  554. 554.
    Ursprung, A. Ueber die Starkebildung im Spektrum. Ber. Deut. Bot. Ges.35: 44–69. 1917.Google Scholar
  555. 555.
    —. Über die Absorptionskurve des grünen Farbstoffes lebender Blätter. Ber. Deut. Bot. Ges.36: 73–85. 1918.Google Scholar
  556. 556.
    Van Niel, C. B. Photosynthesis of bacteria. Contr. Marine Biol., Stanford Univ. Press. pp. 161–169. 1930.Google Scholar
  557. 557.
    Veselkin, N. V., Liubimenko, V. N., Bulgakova, Z. P. andIljin, V. S. Influence de la lumière sur la synthèse de la vitamine C chez les plantules de l’orge. (Russian; French summary). Izv. Nauchn. Inst. P. F. Lesgafta (Bull. Inst. Sc. Lesshaft)17/18: 405–410. 1934.Google Scholar
  558. 558.
    —, —, —,Tikal’skaia, V. V. andEngel, P. S. Influence de la lumière sur la synthèse des vitamines. Izv. Nauchn. Inst. P. F. Lesgafta (Bull. Inst. Sc. Lesshaft)17/18: 389–404. 1934.Google Scholar
  559. 559.
    Virtanen, A. I. andHausen, S. V. Die Vitamenbildung in Pflanzen. Naturwiss.20: 905. 1932.CrossRefGoogle Scholar
  560. 560.
    Vöchting, H. Ueber Spitze und Basis an den Pflanzenorganen. Bot. Zeit.38: 593–605, 609–618. 1880.Google Scholar
  561. 561.
    —. Die Polarität der Gewächse. Review by P. Stark in Referate Zeits. Allg. Physiol.18: 29–30. 1919.Google Scholar
  562. 562.
    Voerkel, S. H. Untersuchungen über die Phototaxis der Chloroplasten. Planta21: 156–205. 1933.CrossRefGoogle Scholar
  563. 563.
    Voorhees, R. K. Effect of certain environmental factors on the germination of the sporangia ofPhysoderma zeae-maydis. Jour. Agr. Res.47: 609–615. 1933.Google Scholar
  564. 564.
    Wakeman-Bonne, G. Die Abhängigkeit der Teilungsrichtung vom Licht beiEremosphaera viridis. Arch. Protistenk.84: 251–256. 1935.Google Scholar
  565. 565.
    Waller, J. C. Plant electricity. I. Photoelectric currents associated with the activity of chlorophyll in plants. Ann. Botany39: 515–538. 1925.Google Scholar
  566. 566.
    —. Plant electricity. II. Towards an interpretation of the photoelectric currents of leaves. New Phyt.28: 291–302. 1929.CrossRefGoogle Scholar
  567. 567.
    —. Towards an interpretation of photoelectric currents in leaves. Brit. Ass. Adv. Sci. Rep. Glasgow. 1928: 624. 1929.Google Scholar
  568. 568.
    Wann, F. B. Some of the factors involved in the sexual reproduction ofMarchantia polymorpha. Am. Jour. Bot.12: 307–318. 1925.CrossRefGoogle Scholar
  569. 569.
    Warburg, O. undChristian, W. Über das neue Oxydationsferment. Naturwiss.20: 980. 1932.CrossRefGoogle Scholar
  570. 570.
    Warburg, O. undNegelein, E. Ueber den Einfluss der Wellenlange auf den Energieumstaz bei der Kohlensäure Assimilation. Zeits. Phys. Chem.106: 191–218. 1923.Google Scholar
  571. 571.
    Warington, Katharine. The influence of length of day on the response of plants to boron. Ann. Botany47: 429–457. 1933.Google Scholar
  572. 572.
    Weaver, John E. andHimmel, W. J. Relation between the development of root system and shoot under long and short day illumination. Plant Physiol.4: 435–457. 1929.PubMedGoogle Scholar
  573. 573.
    Weber, F. Plasmolysezeit und Lichtwirkung. Protoplasma7: 256–258. 1929.CrossRefGoogle Scholar
  574. 574.
    Wellensiek, S. J. The substitution of sunlight by artificial light in seed-potato storing. (Eng. summary.) Tijdschr. Plantenziekten35: 241–250. 1929.CrossRefGoogle Scholar
  575. 575.
    Welsh, J. H. Photokinesis and tonic effect of light inUnionicola. Jour. Gen. Physiol.16: 349–355. 1932.CrossRefGoogle Scholar
  576. 576.
    Wenger, R. Some effects of supplementary illumination with Mazda Lamps on the carbohydrate and nitrogen metabolism of the aster. Abstr. 11th Ann. Meeting Am. Soc. Plant Physiol. Pittsburgh, Pa. p. 9. 1934.Google Scholar
  577. 577.
    Went, F. W. Wuchsstoff und Wachstum. Rec. Trav. Bot. Néerl.25: 1–116. 1928.Google Scholar
  578. 578.
    —. On a growth substance causing root formation. Proc. Kon. Akad. Wetensch. Amsterdam32: 35–39. 1929.Google Scholar
  579. 579.
    —. Eine botanische Polaritätstheorie. Jahrb. Wiss. Bot.76: 528–557. 1932.Google Scholar
  580. 580.
    —. A test method for rhizocaline, the root-forming substance. Proc. Kon. Akad. Wetensch. Amsterdam37: 445–455. 1934.Google Scholar
  581. 581.
    —. Auxin, the plant growth-hormone. Bot. Rev.1: 162–182. 1935.CrossRefGoogle Scholar
  582. 582.
    —. Hormones involved in root formation. The phenomenon of inhibition. Proc. Int. Bot. Cong., Amsterdam. Sept., 1935,2: 267. 1935.Google Scholar
  583. 583.
    Werner, H. O. The effect of a controlled nitrogen supply with different temperatures and photoperiods upon the development of the potato plant. Neb. Agr. Exp. Stat. Res. Bull. 75. 1934.Google Scholar
  584. 584.
    Weston, W. A. R. Dillon. Studies on the reaction of disease organisms to certain wave lengths in the visible and invisible spectrum. II. Reaction of Urediniospores to visible light: wave lengths between 400 and 780 μμ. Phytopath. Zeits.4: 229–246. 1932.Google Scholar
  585. 585.
    Whyte, R. O. andHudson, P. S. Vernalization or Lyssenko’s method for the pre-treatment of seed. Bull. Imp. Bur. Plant Genet. (Great Britain)9: 1–27. 1933.Google Scholar
  586. 586.
    Wieser, Georg. Der Einfluss des Sauerstoffs auf die Lichtwirkung bei der Keimung lichtempfindlicher Samen. Planta4: 526–572. 1927.CrossRefGoogle Scholar
  587. 587.
    Wiessmann, H. Ueber den Einfluss des Lichtes auf die Nahrstoffaufnahme des Pflanzen im Jungenstadium. Zeits. Pflanzenernähr, u. Düng. B. Wirtsch-Prakt. Teil 4: 153–155. 1925.Google Scholar
  588. 588.
    Willstätter, R. M. und Stoll, A. Untersuchungen über Chlorophyll; Methoden und Ergebnisse. 424 p. 1913.Google Scholar
  589. 589.
    Winkler, H. Ueber den Einfluss äusserer Factoren auf die Theilung der Eier vonCystoseira barbata. Ber. Deut. Bot. Ges.18: 297–305. 1900.Google Scholar
  590. 590.
    Withrow, R. B. Plant forcing with electric lights. Ind. Agr. Exp. Sta. Circ. 206. 1934.Google Scholar
  591. 591.
    -. Intensity and wave length of artificial supplemental radiation as factors in the flowering response of pansy, aster and stock. Abstr. 11th Ann. Meeting Am. Soc. Plant Physiol. Pittsburgh, Pa. 1934.Google Scholar
  592. 592.
    Wood, R. W. Physical optics. 846 p. 1934.Google Scholar
  593. 593.
    Work, P. Nitrate of soda in the nutrition of the tomato. Cornell Agr. Exp. Sta. Mem. 75: 86 p. 1924.Google Scholar
  594. 594.
    Yoshii, Yoshiji. Some preliminary studies of the influence upon plants of the relative length of day and night. Sci. Rep. Tôhoku Imp. Univ. Sendai, Japan. IV,2: 143–157. 1926.Google Scholar
  595. 595.
    Zacharowa, T. M. Über den Gasstoffwechsel der Nadelholzpflanzen im Winter. Plante8: 68–83. 1929.CrossRefGoogle Scholar
  596. 596.
    Zeller, A. Ueber Licht- und Strahlungsmessungen in der Pflanzenphysiologie. Ber. Deut. Bot. Ges.52: 581–594. 1934.Google Scholar
  597. 597.
    Zillich, Rudolf. Über den Lichtgenuss einiger Unkräuter und Kulturpflanzen. Fortschr. Landw.1: 461–471. 1926.Google Scholar
  598. 598.
    Zimmerman, P. W. andHitchcock, A. E. Root formation and flowering of dahlia cuttings when subjected to different day lengths. Bot. Gaz.87: 1–13. 1929.CrossRefGoogle Scholar
  599. 599.
    Zinsser, H. and Bayne-Jones, S. A textbook of bacteriology. 1226 p. 1934.Google Scholar
  600. 600.
    Zycha, Herbert. Ueber den Einfluss des Lichtes auf die Permeabilität von Blattzellen für Salze. Jahrb. Wiss. Bot.68: 499–548. 1928.Google Scholar

Copyright information

© The New York Botanical Garden 1936

Authors and Affiliations

  • Paul R. Burkholder
    • 1
  1. 1.Department of BotanyConnecticut CollegeUSA

Personalised recommendations