The Botanical Review

, Volume 3, Issue 6, pp 307–334 | Cite as

Some aspects of the salt nutrition of higher plants

  • D. R. Hoagland


Salt Absorption Nutrient Solution Soil Solution Botanical Review Culture Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnon, D. I. Effect of season, oxygen supply, copper, and manganese on the ammonium and nitrate nitrogen nutrition of barley (abstract). Am. Jour. Bot.23: 695. 1936.Google Scholar
  2. 2.
    —. Influence of hydrogen ion concentration at two seasons on the ammonium and nitrate nitrogen nutrition of barley (abstract). Am. Jour. Bot.23: 695. 1936.Google Scholar
  3. 3.
    -. Influence of hydrogen ion concentration, manganese, copper, oxygen supply and season on the ammonium and nitrate nitrogen nutrition of barley. Univ. Calif., Diss. 1936.Google Scholar
  4. 4.
    Arrington, L. B. And Shive, J. W. Rates of absorption of ammonium and nitrate nitrogen from culture solutions by ten-day old tomato seedlings at two pH levels. Soil Sci.39: 431–435. 1935.Google Scholar
  5. 5.
    —. Oxygen and carbon-dioxide content of culture solutions in relation to cation and anion nitrogen absorption by tomato plants. Soil Sci.42: 341–356. 1936.Google Scholar
  6. 6.
    Aslander, Alfred. Acidity resistance and feeding power of plants. Svensk Bot. Tidsk.29: 27–44. 1935.Google Scholar
  7. 7.
    Berry, W. E. And Steward, F. C. The absorption and accumulation of solutes by living plant cells. VI. The absorption of potassium bromide from dilute solution by tissue from various plant storage organs. Ann. Bot.48: 395–410. 1934.Google Scholar
  8. 8.
    Biekart, H. M. And Connors, C. H. The greenhouse culture of carnations in sand. N. J. Agr. Exp. Sta. Bull.588: 1–24. 1935.Google Scholar
  9. 9.
    Brenchley, Winifred E. The essential nature of certain minor elements for plant nutrition. Bot. Rev.2: 173–196. 1936.Google Scholar
  10. 10.
    Briggs, G. E. The accumulation of electrolytes in plant cells—a suggested mechanism. Proc. Roy. Soc.107B: 248–269. 1930.Google Scholar
  11. 11.
    Brooks, S. C. The accumulation of ions in living cells—a nonequilibrium condition. Protoplasma8: 389–412. 1929.Google Scholar
  12. 12.
    Bryant, A. E. Comparison of anatomical and histological differences between roots of barley grown in aerated and non-aerated culture solutions. Pl. Physiol.9: 389–391. 1934.Google Scholar
  13. 13.
    Burd, J. S. And Martin, J. C. Water displacement of soils and the soil solution. Jour. Agr. Sci.13: 265–295. 1923.Google Scholar
  14. 14.
    ——. Secular and seasonal changes in the soil solution. Soil Sci.18: 151–167. 1924.Google Scholar
  15. 15.
    Cannon, W. A. Physiological features of roots, with special reference to the relation of roots to the aeration of the soil. Carnegie Inst., Wash. Pub. 8. 1925.Google Scholar
  16. 16.
    — Absorption of oxygen by roots when the shoot is in darkness or in light. Pl. Physiol.7: 673–684. 1932.Google Scholar
  17. 17.
    Clark, H. E. And Shive, J. W. The influence of the pH of a culture solution on the rates of absorption of ammonium and nitrate nitrogen by the tomato plant. Soil Sci.37: 203–225. 1934.Google Scholar
  18. 18.
    Clements, Harry F. The upward movement of inorganic solutes in plants. Res. Studies, State Coll. Wash.2: 91–106. 1930.Google Scholar
  19. 19.
    Colby, Harold L. Seasonal absorption of nutrient salts by the French prune grown in solution cultures. Pl. Physiol.8: 1–34. 1933.Google Scholar
  20. 20.
    Collander, Runar. Permeabilitätsstudien anChara ceratophylla. I Die normale Zusammensetzung des Zellsaftes. Acta Bot. Fennica6: 1–20. 1930.Google Scholar
  21. 21.
    -. Salzpermeabilität und Salzaufnahme der Zellen vonChara ceratophylla undTolypellopsis stelligera. 6th Int. Bot. Cong. Proc. II; 289–291. 1935.Google Scholar
  22. 22.
    —. Der Zellsaft des Characeen. Protoplasma25: 201–210. 1936.Google Scholar
  23. 23.
    Curtis, O. F. The translocation of solutes in plants. 1935.Google Scholar
  24. 24.
    Davidson, O. W. And Shive, J. W. The influence of the hydrogenion concentration of the culture solution upon the absorption and assimilation of nitrate and ammonium nitrogen by peach trees grown in sand cultures. Soil Sci.37: 357–384. 1934.Google Scholar
  25. 25.
    Davis, A. R. The variability of plants grown in water cultures. Soil Sci.11: 1–32. 1921.Google Scholar
  26. 26.
    Eaton, Frank M. Automatically operated sand-culture equipment. Jour. Agr. Res.53: 433–444. 1936.Google Scholar
  27. 27.
    —. Boron in soils and irrigation waters and its effects on plants. U. S. Dept. Agr. Tech. Bull.448: 1–131. 1935.Google Scholar
  28. 28.
    Emmert, E. M. Effect of drought on the nutrient levels in the tomato plant. Soil Sci.41: 67–70. 1936.Google Scholar
  29. 29.
    Foster, Arthur C. And Tatman, E. C. The influence of soil moisture and fertilizers on the specific electrical conductivity of tomato plant sap. Am. Jour. Bot.24: 35–39. 1937.Google Scholar
  30. 30.
    Freeland, R. O. Effect of transpiration upon the absorption and distribution of mineral salts in plants. Am. Jour. Bot.23: 355–362. 1936.Google Scholar
  31. 31.
    Gericke, W. F. Plant food requirement of rice. Soil Sci.29: 207–222. 1930.Google Scholar
  32. 32.
    —,And Tavernetti, J. R. Heating of liquid culture media for tomato production. Agr. Eng.17: 141–143. 1936.Google Scholar
  33. 33.
    Gile, P. L. Absorption of nitrate by corn in the dark. Science 81: 520–521. 1935.PubMedGoogle Scholar
  34. 34.
    Goedewaagen, M. A. J. Influence of the nitrate ion concentration of nutrient solutions on the growth of summer wheat. Proc. Kon. Acad. Wetensch., Amsterdam.32: 1–16. 1929.Google Scholar
  35. 35.
    Grossenbacher, Karl A. And Livingston, Burton E. Crytotrophic malnutrition of sorghum in solution culture. Am. Jour. Bot. 23: 588–591. 1936.Google Scholar
  36. 36.
    Haas, A. R. C. And Reed, H. S. Significance of traces of elements not ordinarily added to culture solutions, for the growth of young orange trees. Bot. Gaz.83: 77–84. 1927.Google Scholar
  37. 37.
    Hibbard, R. P. Negative results of physiological balance in soil cultures. Pl. Physiol.2: 1–38. 1927.Google Scholar
  38. 38.
    Hoagland, D. R., Davis, A. R. andHibbard, P. L. The influence of light, temperature, and other conditions on the ability ofNitella cells to concentrate halogens in the cell sap. Jour. Gen. Physiol.6: 47–62. 1926.Google Scholar
  39. 39.
    —, andDavis, A. R. The intake and accumulation of electrolytes by plant cells. Protoplasma6: 610–626. 1929.Google Scholar
  40. 40.
    -. The accumulation of mineral elements by plant cells. Contributions Marine Biology. Stanford Univ. Press 131–144. 1930.Google Scholar
  41. 41.
    —. Mineral nutrition of plants. Ann. Rev. Biochem. 1: 618–636. 1932.Google Scholar
  42. 42.
    —, andMartin, J. C. Absorption of potassium by plants in relation to replaceable, non-replaceable, and soil solution potassium. Soil Sci.36: 1–32. 1933.Google Scholar
  43. 43.
    —. Mineral nutrition of plants. Ann. Rev. Biochem. 2: 471–484. 1933.Google Scholar
  44. 44.
    —, andSnyder, W. C. Nutrition of strawberry plant under controlled conditions. Proc. Am. Soc. Hort. Sci.30: 288–294. 1933.Google Scholar
  45. 45.
    —, andBroyer, T. C. General nature of the process of salt accumulation by roots with description of experimental methods. Pl. Physiol.11: 471–507. 1936.Google Scholar
  46. 46.
    —,Chandler, W. H. andHibbard, P. L. Little-leaf or rosette of fruit trees. V. Effect of zinc on the growth of plants of various types in controlled soil and water culture experiments. Proc. Am. Soc. Hort. Sci.33: 131–141. 1936.Google Scholar
  47. 47.
    -Hoagland, D. R. The plant as a metabolic unit in the soil-plant system. Univ. Calif. Press. Essays in Geobotany, 219–245. 1936.Google Scholar
  48. 48.
    Hutchinson, H. B. And Miller, N. H. J. Direct assimilation of ammonium salts by plants. Jour. Agr. Sci.3: 179–194. 1909.Google Scholar
  49. 49.
    Jacques, A. G. And Osterhout, W. J. V. Kinetics of penetration. XI. Entrance of potassium intoNitella. Jour. Gen. Physiol.18: 967–985. 1935.Google Scholar
  50. 50.
    Jenny, Hans And Cowan, E. W. The utilization of adsorbed ions by plants. Science77: 394–396. 1933.PubMedGoogle Scholar
  51. 51.
    Johnston, Earl S. Potato plants grown in mineral nutrient media. Soil Sci.26: 173–176. 1928.Google Scholar
  52. 52.
    —,And Hoagland, D. R. Minimum potassium level required by tomato plants grown in water cultures. Soil Sci.27: 89–106. 1929.Google Scholar
  53. 53.
    Jones, L. H. And Shive, J. W. Influence of ammonium sulphate on plant growth in nutrient solutions and its effect on hydrogen ion concentration and iron availability. Ann. Bot.37: 355–377. 1923.Google Scholar
  54. 54.
    Ligon, W. S. And Pierre, W. H. Soluble aluminum studies; II. Minimum concentrations of aluminum found to be toxic to corn, sorghum, and barley in culture solutions. Soil Sci.34: 307–320. 1932.Google Scholar
  55. 55.
    Lipman, C. B. And Mackinney, G. Proof of the essential nature of copper for higher green plants. Pl. Physiol.6: 593–599. 1931.Google Scholar
  56. 56.
    Loehwing, W. F. Physiological aspects of the effect of continuous soil aeration on plant growth. Pl. Physiol.9: 567–583. 1934.Google Scholar
  57. 57.
    Lund, E. J. And Kenyon, W. A. I. Electric correlation potentials in growing root tips. Jour. Exp. Zool.48: 333–357. 1927.Google Scholar
  58. 58.
    Lundegårdh, H. Environment and plant development. 1931.Google Scholar
  59. 59.
    —. Mineral nutrition of plants. Ann. Rev. Biochem. 3: 485–500. 1934.Google Scholar
  60. 60.
    Macy, Paul. The quantitative mineral nutrient requirements of plants. Pl. Physiol.11: 749–764. 1936.Google Scholar
  61. 61.
    Mason, T. G. And Maskell, E. J. Further studies on transport in the cotton plant. I. Preliminary observations on the transport of phosphorus, potassium and calcium. Ann. Bot.45: 126–173. 1931.Google Scholar
  62. 62.
    Mazé, P. Influences respectives des éléments de la solution minérale sur le développement du maïs. Ann. Inst. Pasteur28: 21–68. 1914.Google Scholar
  63. 63.
    —. Détermination des éléments minéraux rares nécessaires au développement du maïs. Compt. Rend. Acad. Sci.160: 211–214. 1915.Google Scholar
  64. 64.
    —. Recherche d’une solution purement minérale capable d’assurer l’évolution complète du maïs cultivé à l’abri des microbes. Ann. Inst. Pasteur33: 139–173. 1919.Google Scholar
  65. 65.
    McHargue, J. S. Effect of different concentrations of manganese sulphate on the growth of plants in acid and neutral soils and the necessity for manganese as a plant nutrient. Jour. Agr. Res. 24: 781–794. 1923.Google Scholar
  66. 66.
    Mevius, Walter And Engel, Horst. Die Wirkung der Ammoniumsalze in ihrer Abhängigkeit von der Wasserstoffionenkonzentration. II. Planta-Arch. Wiss. Bot.9: 1–83. 1929.Google Scholar
  67. 67.
    Nightingale, G. T. And Schermerhorn, L. G. Nitrate utilization by asparagus in the absence of light. Science64: 282. 1926.PubMedGoogle Scholar
  68. 68.
    —,And Farnham, R. B. Effects of nutrient concentration on anatomy, metabolism, and bud abscission of sweet pea. Bot. Gaz.47: 477–517. 1936.Google Scholar
  69. 69.
    Oserkowsky, J. Hydrogen-ion concentration and iron content of tracheal sap from green and chlorotic pear trees. Pl. Physiol. 7: 253–259. 1932.Google Scholar
  70. 70.
    Osterhout, W. J. V. Mechanism of salt absorption by plant cells. Nature136: 1034–1036. 1935.Google Scholar
  71. 71.
    —. The absorption of electrolytes in large plant cells. Bot. Rev.2: 283–315. 1936.Google Scholar
  72. 72.
    Pardo, Jose H. Ammonium in the nutrition of higher green plants. Quart. Rev. Biol.10: 1–31. 1935.Google Scholar
  73. 73.
    Parker, F. W. Methods of studying the concentration and composition of the soil solution. Soil Sci.12: 209–232. 1921.Google Scholar
  74. 74.
    —,And Pierre, W. H. The relation between the concentration of mineral elements in a culture medium and the absorption and utilization of those elements by plants. Soil Sci.35: 337–343. 1928.Google Scholar
  75. 75.
    Pierre, W. H., Pohlman, G. Gordon, And McIlvaine, T. C. Soluble aluminum studies: 1. The concentration of aluminum in the displaced soil solution of naturally acid soils. Soil Sci.34: 145–160. 1932.Google Scholar
  76. 76.
    Pirschle, K. Nitrat und Ammonsalze als Stickstoffquellen fur höhere Pflanzen bei konstanter Wasserstoffionenkonzentration. Zeit. Pflanzenernährung, Düng. u. Bodenkunde A22: 51–86. 1931.Google Scholar
  77. 77.
    Prevot, P. And Steward, F. C. Salient features of the root system relative to the problem of salt absorption. Pl. Physiol.11: 509–534. 1936.Google Scholar
  78. 78.
    Prianischnikow, D. N. Ammoniak, Nitrate und Nitrite als Stickstoffquellen fur höhere Pflanzen. Ergeb. Biol.1: 407–446. 1926.Google Scholar
  79. 79.
    Robbins, William J., White, Virginia B., McClary, J. E., And Bartley, Mary. The importance of ash elements in the cultivation of excised root tips. Proc. Nat. Acad. Sci.22: 636–639. 1936.PubMedGoogle Scholar
  80. 80.
    Robbins, W. Rei. Relation of nutrient salt concentration to growth of the tomato and to incidence of blossom-end rot of the fruit. Pl. Physiol.12: 21–50. 1937.Google Scholar
  81. 81.
    Rogers, C. H. And Shive, J. W. Factors affecting the distribution of iron in plants. Pl. Physiol.7: 227–252. 1932.Google Scholar
  82. 82.
    Rosene, H. F. And Lund, E. J. Linkage between output of electric energy by polar tissues and cell oxidation. Pl. Physiol.10: 27–47. 1935.Google Scholar
  83. 83.
    —. Proof of the principle of summation of cell E.M.F.’s Pl. Physiol.10: 209–224. 1935.Google Scholar
  84. 84.
    Rosenfels, Richard S. The absorption and accumulation of potassium bromide byElodea as related to respiration. Protoplasma23: 503–519. 1935.Google Scholar
  85. 85.
    Schmidt, Oswald. Die Mineralstoffaufnahme der höheren Pflanze als Funktion einer Wechselbeziehung zwischen inneren und äusseren Faktoren. Zeit. Bot.30: 289–334. 1936.Google Scholar
  86. 86.
    Schropp, W. And Scharrer, K. Wasserkulturversuche mit der “A-Z” Lösung nach Hoagland. Jahrb. Wiss. Bot.78: 544–563. 1933.Google Scholar
  87. 87.
    Shive, J. W. A study of physiological balance in nutrient media. Physiol. Res.1: 327–397. 1915.Google Scholar
  88. 88.
    —,And Stahl, A. L. Constant rates of continuous solution renewal for plants in water culture. Bot. Gaz.84: 317–323. 1927.Google Scholar
  89. 89.
    Sommer, A. L. And Lipman, C. B. Evidence of the indispensable nature of zinc and boron for higher green plants. Pl. Physiol. 1: 231–249. 1926.Google Scholar
  90. 90.
    —. Further evidence of the essential nature of zinc for the growth of the higher green plants. Pl. Physiol.3: 217–221. 1928.Google Scholar
  91. 91.
    —. Copper as an essential for plant growth. Pl. Physiol.6: 339–445. 1931.Google Scholar
  92. 92.
    Sommer, Anna L. The relationship of the phosphate concentration of solution cultures to the type and size of root systems and the time of maturity of certain plants. Jour. Agr. Res.52: 133–148. 1936.Google Scholar
  93. 93.
    Steward, F. C. The absorption and accumulation of solutes by living plant cells. 1. Experimental conditions which determine salt absorption by storage tissue. Protoplasma15: 29–58. 1932.Google Scholar
  94. 94.
    —. The absorption and accumulation of solutes by living plant cells. II. A technique for the study of respiration and salt absorption in storage tissue under controlled environmental conditions. Protoplasma15: 497–516. 1932.Google Scholar
  95. 95.
    —,Wright, R. And Berry, W. E. The absorption and accumulation of solutes by living plant cells. III. The respiration of cut discs of potato tubers in air and immersed in water, with observations upon surface volume effects and salt accumulation. Protoplasma16: 576–611. 1932.Google Scholar
  96. 96.
    —. The absorption and accumulation of solutes by living plant cells. IV. Surface effects with storage tissue. A quantitative interpretation with respect to respiration and salt absorption. Protoplasma17: 436–453. 1932.Google Scholar
  97. 97.
    —. The absorption and accumulation of solutes by living plant cells. V. Observations upon effects of time, oxygen and salt concentration upon absorption and respiration by storage tissue. Protoplasma18: 208–242. 1933.Google Scholar
  98. 98.
    —,And Berry, W. E. The absorption and accumulation of solutes by living plant cells. VII. The time factor in the respiration and salt absorption of Jerusalem artichoke tissue (Helianthus tuberosus) with observations on ionic interchange. Jour. Exp. Biol.11: 103–119. 1934.Google Scholar
  99. 99.
    ——, andBroyer, T. C. The absorption and accumulation of solutes by living plant cells. VIII. The effect of oxygen upon respiration and salt accumulation. Ann. Bot.50: 1–22. 1936.Google Scholar
  100. 100.
    —. Salt absorption and respiration ofValonia. Carnegie Inst. Year Book32: 281–283. 1933.Google Scholar
  101. 101.
    —,And Martin, J. C. The physiology ofValonia. Carnegie Inst. Year Book33: 262. 1934.Google Scholar
  102. 102.
    — Mechanism of salt absorption by plant cells. Nature 135: 553–558. 1935.Google Scholar
  103. 103.
    Steward, F. C. Mineral nutrition of plants. Ann. Rev. Biochem.4: 519–544. 1935.Google Scholar
  104. 104.
    -,And Martin, J. C. Article in press. Pub. Carnegie Inst. 1937.Google Scholar
  105. 105.
    Teakle, L. J. H. Absorption of phosphate from soil and solution cultures. Pl. Physiol.4: 213–232. 1929.Google Scholar
  106. 106.
    Thomas, Walter. Balanced fertilizers and Liebig’s law of the minimum. Science70: 382–384. 1929.PubMedGoogle Scholar
  107. 107.
    —. The conception of balance with respect to the absorption of nitrogen, phosphorus and potassium by plants and the influence of the level of nutrition. Science72: 425–427. 1930.PubMedGoogle Scholar
  108. 108.
    Tidmore, J. W. Phosphate studies in solution cultures. Soil Sci.30: 13–31. 1930.Google Scholar
  109. 109.
    Tiedjens, V. A. Factors affecting assimilation of ammonium and nitrate nitrogen, particularly in tomato and apple. Pl. Physiol. 9: 31–57. 1934Google Scholar
  110. 110.
    Tottingham, W. E. And Lowsma, Henry. Effects of light upon nitrate assimilation in wheat. Jour. Am. Chem. Soc.50: 2436–2445. 1928.Google Scholar
  111. 111.
    —,Stephens, H. L., And Lease, E. J. Influence of shorter light rays upon assimilation of nitrate by the young wheat plant. Pl. Physiol.9: 127–142. 1934.Google Scholar
  112. 112.
    Trelease, Sam F., And Trelease, Helen M. Changes in hydrogen-ion concentration of culture solutions containing nitrate and ammonium nitrogen. Am. Jour. Bot.22: 520–542. 1935.Google Scholar
  113. 113.
    Tyner, Edward H. Feeding power of plants for potassium. Soil Sci.39: 405–422. 1935.Google Scholar
  114. 114.
    Veihmeyer, F. J. Some factors affecting irrigation requirements of deciduous orchards. Hilgardia2: 125–284. 1927.Google Scholar
  115. 115.
    Warington, K. The effects of boric acid and borax on the broad bean and certain other plants. Ann. Bot.37: 629–672. 1923.Google Scholar
  116. 116.
    Withrow, R. B. And Biebel, J. P. A subirrigation method of supplying nutrient solutions to plants growing under commercial and experimental conditions. Jour. Agr. Res.53: 693–701. 1936.Google Scholar
  117. 117.
    Zimmerman, P. W. Oxygen requirements for root growth of cuttings in water. Am. Jour. Bot.17: 842–861. 1930.Google Scholar
  118. 118.
    Zscheile, F. P. Jr. The thermodynamics of ion concentration by living plant cells. Protoplasma11: 481–496. 1930.Google Scholar

Copyright information

© The New York Botanical Garden 1937

Authors and Affiliations

  • D. R. Hoagland
    • 1
  1. 1.University of CaliforniaUSA

Personalised recommendations