Advertisement

Linear approximation of the first eigenvalue on compact manifolds

  • Mufa Chen
  • E. Scacciatelli
  • Liang Yao
Article

Abstract

For compact, connected Riemannian manifolds with Ricci curvature bounded below by a constant, what is the linear approximation of the first eigenvalue of Laplacian? The answer is presented with computer assisted proof and the result is optimal in certain sense.

Keywords

first eigenvalue Riemannian manifolds linear approximation 

References

  1. 1.
    Chavel, I., Eigenvalues in Riemannian Geometry, New York: Academic Press, 1984.MATHGoogle Scholar
  2. 2.
    Yau, S. T., Schoen, R., Differential Geometry (in Chinese), Beijing: Science Press, 1988.Google Scholar
  3. 3.
    Chen, M. F., Wang, F. Y., General formula for lower bound of the first eigenvalue on Riemannian manifolds, Science in China, Ser. A, 1997, 40(4): 384–394.MATHCrossRefGoogle Scholar
  4. 4.
    Chen, M. F., Coupling, spectral gap and related topics (II), Chinese Science Bulletin, 1997, 42(17): 1409–1416.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Zhong, J. Q., Yang, H. C, On estimate of the first eigenvalue of a compact Riemannian manifold, Science in China, Ser. A, 1984, 12: 1251–1265.Google Scholar
  6. 6.
    Yang, D. G., Lower bound estimates of the first eigenvalue for compact manifolds with positive Ricci curvature, Pacific J. Math., 1999, 190(2): 383–398.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Cai, K. R., Estimate on lower bound of the first eigenvalue of a compact Riemannian manifold, Chin. Ann. Math. (B), 1991, 12(3): 267–271.MATHGoogle Scholar
  8. 8.
    Zhao, D., Eigenvalue estimate on a compact Riemann manifolds, Science in China, Ser. A, 1999, 42(9): 897–904.MATHCrossRefGoogle Scholar
  9. 9.
    Chen, M. F., Variational formulas and approximation theorems for the first eigenvalue in dimension one, Science in China, Ser. A, 2001, 44(4): 409–418.MATHCrossRefGoogle Scholar
  10. 10.
    Chen, M. F., Analytic proof of dual variational formula for the first eigenvalue in dimension one, Science in China, Ser. A, 1999, 42(8): 805–815.MATHCrossRefGoogle Scholar
  11. 11.
    Kröger, P., On the spectral gap for compact manifolds, J. Differ. Geom., 1992, 36: 315–330.MATHGoogle Scholar
  12. 12.
    Bakry, D., Qian, Z. M., Some new results on eigenvectors via dimension, diameter and Ricci curvature, Adv. Math., 2000, 155(1): 98–153.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  1. 1.Department of MathematicsBeijing Normal UniversityBeijingChina
  2. 2.Dipartimento di MatematicaUniversità “La Sapienza”RomeItaly

Personalised recommendations