Science in China Series A: Mathematics

, Volume 44, Issue 1, pp 120–127 | Cite as

Statistical analysis of Fe abundances gradients in the Galaxy

  • Chenzhou Cui
  • Gang Zhao
  • Yongheng Zhao
  • Jianrong Shi


Using the high precision data of the proper motions and parallaxes from Hipparcos catalogue, we obtained the orbital parameters of 1302 stars in the Galaxy based on the mass distribution model provided by Allen and Santillón. Fe abundances of 1295 stars among our samples were analyzed. With the correlation analyses between [Fe/H] and orbital parameters, we obtained that the Fe gradient is - 0.057 ± 0.007 dex/kpc along the direction of the maximum galactocentric distance (hereafter DGmax) in the range of 8.5 kpc < DGmax < 17 kpc. We also got the result that the vertical gradient is steeper than the radial gradient. Furthermore, we divided the samples into two subgroups: giants and dwarfs; F, G and K stars; and then analyzed them respectively. Our results show that the gradient becomes flatter and flatter from giants to dwarfs, from F type to G and K type stars. We also divided the samples into disk and halo stars using maximum vertical distance Zmax = 1 kpc as the criterion and got the result that the abundances of the disk stars are much higher than that of the halo stars. Our work suggests the existence of the galactic gradient and supports those chemlcal evolution medels which show that the halo was formed before the disk at the early stage of the Galaxy.


stars abundances-Galaxy evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shaver, P. A., McGee, R. X., Newton, L. M. et al., The galactic abundance gradient, MNRAS, 1983, 204: 53.Google Scholar
  2. 2.
    Amnuel, P. R., The features of chemical abundances in Galactic planetaly nebulae, MNRAS, 1993, 261: 263.Google Scholar
  3. 3.
    Maciel, W. J., Koppen, J., Abundance gradents from disk planetary nebulae: O, Ne, S and Ar, A & A, 1994, 282, 436.Google Scholar
  4. 4.
    Maciel, W. J., Abundance gradients from planetary nebulae in the galactic disk, IAU Samp., 1997, 180: 397.Google Scholar
  5. 5.
    Maciel, W. J., Quireza, C., Abundance gradients in the outer galactic disk from planetary nebulae, A & A, 1999, 345: 629.Google Scholar
  6. 6.
    Lennon, D. J., Dufton, P. L., Fitzsimmons, A. et al., Dolidze 25: a metal-deficient galactic open cluster, A & A, 1990, 240: 349.Google Scholar
  7. 7.
    Fitzsimmons, A., Dufton, P. L., Rolleston, W. R. J., A comparison of oxygen and nitrogen abundances in young clusters and associations and in the interstellar gas, MNRAS, 1992, 259: 489.Google Scholar
  8. 8.
    Kilian, J., Montenbruck, O., Nissen, P.E., The galactic distribution of chemical elements as derived from B-stars in open clusters, A & A, 1994, 284: 437.Google Scholar
  9. 9.
    Kaufer, A., Szeifert, T., Krenzin, R. et al., The galactic abundance Fadients traced by B-type stars, A & A, 1994, 289: 740.Google Scholar
  10. 10.
    Smartt, S. J., Dufton, P. L., Rolleston, W. R. J., A metal deficient early B-type star near the edge of the galactic disk, A & A, 1996, 305: 164.Google Scholar
  11. 11.
    Smartt, S. J., Dufton, P. L., Rolleston, W. R. J., The chemical composition towards the galactic anti-centre, A & A, 1996, 310: 123.Google Scholar
  12. 12.
    Binette, L., Dopita, M. A., D’Odorico, S. et al., The galactic abundance gradient from supernova remnant observations, A & A, 1982, 115: 315.Google Scholar
  13. 13.
    Dauphole, B., Geffert, M., Colin, J. et al., The kinematics of globular clusters, apocentric distances and a halo metallicity gradient, A & A, 1996, 313: 119.Google Scholar
  14. 14.
    Marsakov, V. A., Shevelev, Y. G., Catalogue of ages, metallicities, orbital elements and other parameters for nearby F stars, BICDS, 1995, 47: 13.Google Scholar
  15. 15.
    Cayrel de Strobel, G., Soubiran, C., Friel, E. D. et al., A catalogue of [Fe/H] determinations: 1996 edition, A & AS, 1997, 124: 299.Google Scholar
  16. 16.
    Barbier-Brossat, M., Petit, M., Catalogue bihliographique de vitesses radials stellaires, A & AS, 1990, 85: 885.Google Scholar
  17. 17.
    Andersen, J., Nordstrom, B., Radial velocities of bright southern stars. V. 146 population II F stars and related stars, A & AS, 1985, 62: 355.Google Scholar
  18. 18.
    Nordstrom, B., Anderson, J., Radal velocities of bright southern stars. IV. 551 A-and Ftype HR and FK stars, A & AS, 1985, 61: 53.Google Scholar
  19. 19.
    Penyman, M. A. C., Lindegren, L., Kovalevsky, J. et al., The Hipparcos Catalog, A & A, 1997, 323: L49.Google Scholar
  20. 20.
    Allen, C., Santillén, A., An improved model of the galactic mass distribution for orbit computations, RMAA, 1991, 22: 255.Google Scholar
  21. 21.
    Allen, C., Martos, M. A., A simple realistic model of the galactic mass distribution for orbit computations, RMAA, 1986, 13: 137.Google Scholar
  22. 22.
    Press, W. H., Teukolsky, S. A., Vetterling, W. T., Numrical Recipes in C, The Art of Scientific Computing, 2nd ed., Cambridge: Cambridge University Press, 1993.Google Scholar
  23. 23.
    Johnson, D. R. H., Soderblom, D. R., Calculating galactic space velocities and their uncertainties, with an application to the Ursa Major group, AJ, 1987, 93: 864.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Chenzhou Cui
    • 1
  • Gang Zhao
    • 1
  • Yongheng Zhao
    • 1
  • Jianrong Shi
    • 1
  1. 1.Beijing Astronomical ObservatoryChinese Academy of SciencesBeijingChina

Personalised recommendations