Advertisement

Concentration phenomena in the semilinear parabolic equation

  • Zhong Tan
Article

Abstract

We prove the existence of the global, but unbounded solution of the semilinear heat equations with critical Sobolev exponent, and that under some assumptions, the global unbounded classical solution concentrates on origin as t → ∞.

Keywords

semilinear parabolic equation critical Sobolev exponent existence asymptotic concentration-compactness principle 

References

  1. 1.
    Fujita, H., On the blowing up of solutions of the Chauch problem for ut = △u + u1+a, J. Fac. Sci. Univ. Tokyo Sect. I, 1966, 13: 109.MATHMathSciNetGoogle Scholar
  2. 2.
    Ni, W. M., Sacks, P. E., Tavantzis, J., On the asymptotic behavior of solutions of certain quasilinear equations of parabolic type, J. Differential Equations, 1984, 54: 97.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cazenave, T., Lions, P. L., Solutions globales d’equations de la chaleur semilineaires, Comm. in Partial Differential Equations, 1984, 9(10): 955.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Giga, Y., A bound for global solutions of semilinear heat equations, Commun. Math. Phys., 1986, 103: 415.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Galaktionov, V., Vazquez, J. L., Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math., 1997, 50: 1.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Rey, O., The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Fune. Anal., 1990, 89: 1.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Wei Juncheng, Asymptotic behavior of least energy solution to a semilinear Dirichlet problem near the critical exponent, J. Math. Soc. Japan, 1998, 50(1): 139.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Lions, P. L., The concentration-compactness principle in the calculus of variations, The limit case 1, 2, Rev. Mat. Iberoamerioana, 1985, 1: 45, 145.MATHGoogle Scholar
  9. 9.
    Brezis, H., Elliptic equations with limiting Sobolev exponents—the impact of topology, Commun. Pure and Appl. Math., 1986, XXXXIX: S17.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Sacks, J., Uhlenbeck, K., The existence of minimal immersions of 2-spheres, Ann. Math., 1981, 113: 1.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Zhu Xiping, Nontrivial solutions of quasilinear elliptic equation involving critical growth, Science in China (in Chinese), Ser. A, 1988, (3): 225.Google Scholar
  12. 12.
    Pohozaev, S. I., Eigenfunctions of the equation -△u + 2f(u)=0, Soviet. Math. Dold., 1965, 6: 1408.Google Scholar
  13. 13.
    Gidas, B., Ni, W. -M., Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 1979, 68: 209.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ni, W. -M., Sacks, P. E., Singular behaviour in nonlinear parabolic equations, Tran. of the AMS, 1985, 287(2): 657.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ni, W. -M., Sacks, P. E., The number of peaks of positive solutions of semilinear parabolic equations, SIAM J. Math. Anal., 1985, 16(3): 460.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  1. 1.Department of MathematicsXiamen UniversityXiamenChina

Personalised recommendations